Abstract

The performance of the conventional azo-dye polymer modulation system is compared with that of the recently developed attenuated-total-reflection (ATR) dye–polymer modulation techniques. Experiments based on Fabry–Perot resonance shifting in ATR geometry indicate that the modulation parameters, namely, speed, contrast, and efficiency, are enhanced. Although the dye–polymer response still remains fairly slow, ATR methods provide substantial improvement over the existing system. An all-optic long-range surface-plasmon azo-dye polymer modulation system is also proposed. Computer simulation of the reflectance and the photoinduced resonance shifting suggest that the proposed system can be used effectively for all-optic modulation. Some of the limitations of both systems and a pratical application of the ATR modulation methods are discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photoinduced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
    [CrossRef]
  2. T. Luckemeyer, H. Franke, W. F. X. Frank, “Photoinduced phase modulation in PMMA lightguides doped with an azo dye,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt Instrum. Eng.1213, 126–136 (1990).
  3. J. R. Kulisch, H. Franke, R. A. Lessard, “Photoinduced lightguides coupled to a dyed PMMA matrix,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1213, 112–119 (1990).
  4. L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [CrossRef]
  5. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  6. S. Calixto, R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
    [CrossRef] [PubMed]
  7. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoaniso-tropic materials with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984).
    [CrossRef] [PubMed]
  8. T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24, 785–788 (1985).
    [CrossRef] [PubMed]
  9. A. Yacoubian, T. M. Aye, G. Savant, “Azo-dye polymer based modulation in total internal reflective Fabry–Perot geometry,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774 (to be published).
  10. M. Dumont, Y. Levy, “Measurement of electrooptic properties of organic thin films by attenuated total reflection,” in Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer-Verlag, New York, 1989), pp. 256–266.
    [CrossRef]
  11. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  12. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  13. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  14. J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
    [CrossRef] [PubMed]
  15. J. S. Schildkraut, “Long-range surface plasmon electrooptic modulator,” Appl. Opt. 27, 4587–4590 (1988).
    [CrossRef] [PubMed]
  16. G. T. Sincerbox, J. C. Gordon, “Small fast large aperture light modulator using attenuated total reflection,” Appl. Opt. 20, 1491–1494 (1981).
    [CrossRef] [PubMed]
  17. S. Calixto, R. A. Lessard, “Real-time polarization optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
    [CrossRef] [PubMed]
  18. C. H. Kwak, J. T. Kim, S. S. Lee, “Nonlinear optical image processing in photoanisotropic amorphous As2S3 thin film,” Appl. Opt. 28, 737–739 (1989).
    [CrossRef] [PubMed]
  19. A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982), Chap. 4, pp. 193–200.
  20. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 4, pp. 86–90.
  21. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 1, pp. 38–62.
  22. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 7, pp. 281–282.
  23. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1976), Chap. 1, pp. 12–13.
  24. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1989); pp. 264–274.
    [CrossRef]
  25. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, New York, 1986), Chap. 2, pp. 15–16.
  26. G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
    [CrossRef]
  27. H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films: a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
    [CrossRef]
  28. F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
    [CrossRef]
  29. Z. Sekkat, M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53, 121–123 (1991).
    [CrossRef]
  30. M. Dumont, D. Morichere, Z. Sekkat, Y. Levy, “Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1559, 127–138 (1991).
  31. E. M. Yeatman, M. E. Caldwell, “Surface plasmon spatial light modulators,” in Optical Information Processing Systems and Architectures, B. Jaridi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 522–532 (1989).
  32. G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media.” Phys. Rev. B 16, 1297–1311 (1977).
    [CrossRef]
  33. G. Savant, J. Hirsh, Z. Z. Ho, T. Jannson, “Three-dimensional memory based on birefringent polymeric material,” in Photonics for Computers, Neural Networks, and Memories, S. T. Kowel, W. J. Miceli, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1773C (to be published).
  34. Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
    [CrossRef]
  35. R. Arrathoon, S. Kozaitis, “Shadow casting for multiple-valued associative logic,” Opt. Eng. 25, 29–37 (1986).

1991 (1)

Z. Sekkat, M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53, 121–123 (1991).
[CrossRef]

1989 (1)

1988 (2)

J. S. Schildkraut, “Long-range surface plasmon electrooptic modulator,” Appl. Opt. 27, 4587–4590 (1988).
[CrossRef] [PubMed]

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photoinduced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

1986 (1)

R. Arrathoon, S. Kozaitis, “Shadow casting for multiple-valued associative logic,” Opt. Eng. 25, 29–37 (1986).

1985 (2)

1984 (5)

1983 (1)

1981 (2)

1978 (1)

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[CrossRef]

1977 (1)

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media.” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

1975 (1)

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films: a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

1974 (1)

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
[CrossRef]

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Abeles, F.

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
[CrossRef]

Arrathoon, R.

R. Arrathoon, S. Kozaitis, “Shadow casting for multiple-valued associative logic,” Opt. Eng. 25, 29–37 (1986).

Aye, T. M.

A. Yacoubian, T. M. Aye, G. Savant, “Azo-dye polymer based modulation in total internal reflective Fabry–Perot geometry,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774 (to be published).

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982), Chap. 4, pp. 193–200.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 1, pp. 38–62.

Caldwell, M. E.

E. M. Yeatman, M. E. Caldwell, “Surface plasmon spatial light modulators,” in Optical Information Processing Systems and Architectures, B. Jaridi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 522–532 (1989).

Calixto, S.

DeVelis, J. B.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1989); pp. 264–274.
[CrossRef]

Dragostinova, V.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photoinduced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Dumont, M.

Z. Sekkat, M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53, 121–123 (1991).
[CrossRef]

M. Dumont, D. Morichere, Z. Sekkat, Y. Levy, “Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1559, 127–138 (1991).

M. Dumont, Y. Levy, “Measurement of electrooptic properties of organic thin films by attenuated total reflection,” in Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer-Verlag, New York, 1989), pp. 256–266.
[CrossRef]

Frank, W. F. X.

T. Luckemeyer, H. Franke, W. F. X. Frank, “Photoinduced phase modulation in PMMA lightguides doped with an azo dye,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt Instrum. Eng.1213, 126–136 (1990).

Franke, H.

J. R. Kulisch, H. Franke, R. A. Lessard, “Photoinduced lightguides coupled to a dyed PMMA matrix,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1213, 112–119 (1990).

T. Luckemeyer, H. Franke, W. F. X. Frank, “Photoinduced phase modulation in PMMA lightguides doped with an azo dye,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt Instrum. Eng.1213, 126–136 (1990).

Gordon, J. C.

Hernandez, G.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, New York, 1986), Chap. 2, pp. 15–16.

Hirsh, J.

G. Savant, J. Hirsh, Z. Z. Ho, T. Jannson, “Three-dimensional memory based on birefringent polymeric material,” in Photonics for Computers, Neural Networks, and Memories, S. T. Kowel, W. J. Miceli, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1773C (to be published).

Ho, Z. Z.

G. Savant, J. Hirsh, Z. Z. Ho, T. Jannson, “Three-dimensional memory based on birefringent polymeric material,” in Photonics for Computers, Neural Networks, and Memories, S. T. Kowel, W. J. Miceli, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1773C (to be published).

Ichioka, Y.

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 7, pp. 281–282.

Jannson, T.

G. Savant, J. Hirsh, Z. Z. Ho, T. Jannson, “Three-dimensional memory based on birefringent polymeric material,” in Photonics for Computers, Neural Networks, and Memories, S. T. Kowel, W. J. Miceli, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1773C (to be published).

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1976), Chap. 1, pp. 12–13.

Kim, J. T.

Kovacs, G. J.

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[CrossRef]

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media.” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Kozaitis, S.

R. Arrathoon, S. Kozaitis, “Shadow casting for multiple-valued associative logic,” Opt. Eng. 25, 29–37 (1986).

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Kulisch, J. R.

J. R. Kulisch, H. Franke, R. A. Lessard, “Photoinduced lightguides coupled to a dyed PMMA matrix,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1213, 112–119 (1990).

Kwak, C. H.

Lee, S. S.

Lessard, R. A.

S. Calixto, R. A. Lessard, “Real-time polarization optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
[CrossRef] [PubMed]

S. Calixto, R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
[CrossRef] [PubMed]

J. R. Kulisch, H. Franke, R. A. Lessard, “Photoinduced lightguides coupled to a dyed PMMA matrix,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1213, 112–119 (1990).

Levy, Y.

M. Dumont, Y. Levy, “Measurement of electrooptic properties of organic thin films by attenuated total reflection,” in Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer-Verlag, New York, 1989), pp. 256–266.
[CrossRef]

M. Dumont, D. Morichere, Z. Sekkat, Y. Levy, “Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1559, 127–138 (1991).

Lopez-Rios, T.

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
[CrossRef]

Luckemeyer, T.

T. Luckemeyer, H. Franke, W. F. X. Frank, “Photoinduced phase modulation in PMMA lightguides doped with an azo dye,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt Instrum. Eng.1213, 126–136 (1990).

Markovsky, P.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photoinduced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Mateva, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photoinduced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films: a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

Morichere, D.

M. Dumont, D. Morichere, Z. Sekkat, Y. Levy, “Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1559, 127–138 (1991).

Nikolova, L.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Parrent, G. B.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1989); pp. 264–274.
[CrossRef]

Quail, J. C.

Rako, J. G.

Reynolds, G. O.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1989); pp. 264–274.
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Savant, G.

A. Yacoubian, T. M. Aye, G. Savant, “Azo-dye polymer based modulation in total internal reflective Fabry–Perot geometry,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774 (to be published).

G. Savant, J. Hirsh, Z. Z. Ho, T. Jannson, “Three-dimensional memory based on birefringent polymeric material,” in Photonics for Computers, Neural Networks, and Memories, S. T. Kowel, W. J. Miceli, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1773C (to be published).

Schildkraut, J. S.

Scott, G. D.

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[CrossRef]

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media.” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Sekkat, Z.

Z. Sekkat, M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53, 121–123 (1991).
[CrossRef]

M. Dumont, D. Morichere, Z. Sekkat, Y. Levy, “Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1559, 127–138 (1991).

Simon, H. J.

J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
[CrossRef] [PubMed]

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films: a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

Sincerbox, G. T.

Stoyanova, K.

Tanida, J.

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

Thompson, B. J.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1989); pp. 264–274.
[CrossRef]

Todorov, T.

Tomova, N.

Watson, J. G.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films: a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1976), Chap. 1, pp. 12–13.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 1, pp. 38–62.

Yacoubian, A.

A. Yacoubian, T. M. Aye, G. Savant, “Azo-dye polymer based modulation in total internal reflective Fabry–Perot geometry,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774 (to be published).

Yeatman, E. M.

E. M. Yeatman, M. E. Caldwell, “Surface plasmon spatial light modulators,” in Optical Information Processing Systems and Architectures, B. Jaridi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 522–532 (1989).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 4, pp. 86–90.

Am. J. Phys. (1)

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films: a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. B (1)

Z. Sekkat, M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53, 121–123 (1991).
[CrossRef]

Can. J. Phys. (1)

G. J. Kovacs, G. D. Scott, “Attenuated total reflection angular spectra of Ag film bounded by dielectric slabs,” Can. J. Phys. 56, 1235–1247 (1978).
[CrossRef]

J. Mod. Opt. (1)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photoinduced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Opt. Acta (1)

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Opt. Commun. (1)

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
[CrossRef]

Opt. Eng. (1)

R. Arrathoon, S. Kozaitis, “Shadow casting for multiple-valued associative logic,” Opt. Eng. 25, 29–37 (1986).

Opt. Lett. (1)

Phys. Rev. B (1)

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media.” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Proc. IEEE (1)

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

Z. Phys. (2)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (14)

T. Luckemeyer, H. Franke, W. F. X. Frank, “Photoinduced phase modulation in PMMA lightguides doped with an azo dye,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt Instrum. Eng.1213, 126–136 (1990).

J. R. Kulisch, H. Franke, R. A. Lessard, “Photoinduced lightguides coupled to a dyed PMMA matrix,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1213, 112–119 (1990).

A. Yacoubian, T. M. Aye, G. Savant, “Azo-dye polymer based modulation in total internal reflective Fabry–Perot geometry,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774 (to be published).

M. Dumont, Y. Levy, “Measurement of electrooptic properties of organic thin films by attenuated total reflection,” in Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer-Verlag, New York, 1989), pp. 256–266.
[CrossRef]

A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982), Chap. 4, pp. 193–200.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 4, pp. 86–90.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 1, pp. 38–62.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 7, pp. 281–282.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1976), Chap. 1, pp. 12–13.

G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1989); pp. 264–274.
[CrossRef]

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, New York, 1986), Chap. 2, pp. 15–16.

G. Savant, J. Hirsh, Z. Z. Ho, T. Jannson, “Three-dimensional memory based on birefringent polymeric material,” in Photonics for Computers, Neural Networks, and Memories, S. T. Kowel, W. J. Miceli, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1773C (to be published).

M. Dumont, D. Morichere, Z. Sekkat, Y. Levy, “Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1559, 127–138 (1991).

E. M. Yeatman, M. E. Caldwell, “Surface plasmon spatial light modulators,” in Optical Information Processing Systems and Architectures, B. Jaridi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 522–532 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Multilayer system configurations for obtaining (a) FP resonances (ATR-FP method), (b) long-range SPW resonance; (c) modulation system geometry. PMMA–DR1, poly(methyl methacrylate) sensitized with Disperse Red 1 dye; BK7, crown glass prism; SF1, flint glass prism.

Fig. 2
Fig. 2

Reflection of the ATR-FP system in the absence of the pump beam: theoretical reflectance (solid curve), SPW resonance at the Ag–MgF2 interface (PMMA–DR1 layer infinitely thick) (curve a), experimental measurements (curve b).

Fig. 3
Fig. 3

FP resonance with and without the MgF2 layer: BK7, MgF2 (0.48 μm), Ag (0.05 μm), PMMA–DR1 (2.8 μm) (solid curve); BK7, Ag (0.05 μm), PMMA–DR1 (2.8 μm) (dashed curve).

Fig. 4
Fig. 4

ATR-FP modulation experiment: λ/2 plate, half-wave plate.

Fig. 5
Fig. 5

FP resonance shifting as a result of the change in the polymer index (with the ATR-FP method) for Δnx = −0.0012: origins a resonance (solid curve), photoinduced shifted resonance (dashed curve).

Fig. 6
Fig. 6

Conventional intensity modulation method.

Fig. 7
Fig. 7

Experimental comparison of the conventional and the ATR-FP modulation methods: (a) comparison of modulation contrast ratios; modulation efficiency, or detected-to-incident-intensity ratios for (b) conventional and (c) ATR-FP methods.

Fig. 8
Fig. 8

Long-range surface-plasmon resonance shifting as a result of the change in the polymer index for Δnx = −0.0012: original resonance (solid curve), photoinduced shifted resonance (dashed curve).

Fig. 9
Fig. 9

Averaging of the reflectance over a small finite area: A, small probe beam area; dα, infinitesimal area on the dye–polymer layer; Itot, actual intensity.

Tables (4)

Tables Icon

Table 1 ATR-FP System Multilayer Coating Parameters

Tables Icon

Table 2 Comparison of Modulation Contrast Ratioa and Response Time of the Conventional Birefringence and the ATR-FP Methods

Tables Icon

Table 3 Long-Range SPW System Multilayer Coating Parameters

Tables Icon

Table 4 Logical Functions of Two Binary Variables Performable with the ATR-FB Methoda

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R 1234 = r 12 + R 234 exp ( i 2 k 2 z d 2 ) 1 + r 12 R 234 exp ( i 2 k 2 z d 2 ) ,
R 234 = r 23 + r 34 exp ( i 2 k 3 z d 3 ) 1 + r 23 r 34 exp ( i 2 k 3 z d 3 ) .
R 12345 = r 12 + R 2345 exp ( i 2 k 2 z d 2 ) 1 + r 12 R 2345 exp ( i 2 k 2 z d 2 ) ,
R 2345 = r 23 + R 345 exp ( i 2 k 3 z d 3 ) 1 + r 23 R 345 exp ( i 2 k 3 z d 3 ) ,
R 345 = r 34 + r 45 exp ( i 2 k 4 z d 4 ) 1 + r 34 r 45 exp ( i 2 k 4 z d 4 ) ,
r i j = n j cos θ i - n i cos θ j n j cos θ i + n i cos θ j .
n i sin θ i = n j sin θ j .
k i z = 2 π λ ( i - 1 sin 2 θ 1 ) 1 / 2 ,
θ FP = cos - 1 ( m λ 2 n c d ) ,
θ SPW = sin - 1 [ 1 n 1 ( r d r + d ) 1 / 2 ] ,
Δ ϕ = 2 π λ Δ n d ,
I = I 0 sin 2 ( Δ ϕ 2 ) ,
I tot = 1 A A R 12345 α 2 d α ,

Metrics