Abstract

The Système International base unit for photometry, the candela, has been realized by using absolute detectors rather than absolute sources. This change in method permits luminous intensity calibrations of standard lamps with an expanded uncertainty of 0.46%, almost a factor-of-2 improvement. A group of eight reference photometers has been constructed with silicon photodiodes, matched with filters to mimic the Commission Internationale de l’Éclairage spectral luminous efficiency function for photopic vision. The design, characterization, calibration, evaluation, and further application of the photometers are discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. T. Walsh, Photometry, 3rd ed. (Constable, London, 1958), Chap. 1.
  2. Comptes Rendus des Séances de la Neuviéme Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Paris, 1949), session 9, p. 53.
  3. W. R. Blevin, B. Steiner, “Redefinition of the candela and the lumen,” Metrologia 11, 97–104 (1975).
    [CrossRef]
  4. Comptes Rendus des Séances de la 16e Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Sèvres, France, 1979), session 16, p. 100; see also P. Giacomo, “News from BIPM,” Metrologia 16, 55–61 (1980) [corrected English translation 17, 74 (1981)].
    [CrossRef]
  5. R. L. Booker, D. A. McSparron, Photometric Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-15 (1987).
  6. J. H. Walker, R. D. Saunders, A. T. Hattenburg, “The NBS scale of spectral radiance,” Metrologia 24, 79–88 (1987); Spectral Radiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-1 (1987).
    [CrossRef]
  7. J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).
  8. The present study follows, to the extent possible, Guide to the Expression of Uncertainty in Measurement, soon to be made final by the International Organization for Standardization, Geneva. NIST has decided to conform to the Guide in all activites by 1994, using an expanded uncertainty coverage factor (as defined in the Guide) of k = 2. Earlier studies at NIST were generally reported with 3σ uncertainties. For consistency in this paper, when a standard uncertainty of the present study is compared with an earlier result, the latter is restated to a 1σ basis. Earlier results are restated to a 2σ basis when the context calls for an expanded uncertainty; see also B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Tech. Tech. Note 1297 (1993).
  9. H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10, 10(E) (1990).
    [CrossRef]
  10. K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
    [CrossRef]
  11. K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
    [CrossRef]
  12. G. Wyszecki, W. R. Blevin, K. G. Kessler, K. D. Mielenz, Principles Governing Photometry, (Bureau International des Poids et Mesures, Sèvres, France, 1983); “Principles governing photometry,” Metrologia 19, 97–101 (1983).
  13. The Basis of Physical Photometry, Publication 18.2 (Commission Internationale de l’Éclairage, Paris, 1983). (Currently available through the U.S. National Committee of the CIE, c/o T. M. Lemons, TLA-Lighting Consultants, Inc., 72 Loring Ave., Salem, Mass. 01970).
  14. T. M. Goodman, P. J. Key, A Radiometric Realization of the Candela, NPL Rep. QU 75 (National Physical Laboratory, Teddington, UK, 1986); “The NPL radiometric realization of the candela,” Metrologia 25, 29–40 (1988).
  15. L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the new candela (1979) at NRC,” Metrologia 24, 139–152 (1987).
    [CrossRef]
  16. C. Carreras, A. Corrons, “Absolute spectroradiometric and photometric scales based on an electrically calibrated pyroelectric radiometer,” Appl. Opt. 20, 1174–1177 (1981).
    [CrossRef] [PubMed]
  17. Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
    [CrossRef]
  18. J. L. Gardner, “Recent international intercomparison of basic lighting standards,” Light. Aust. 7(4), 21–24 (1987).
  19. V. I. Sapritskii, “A new standard for the candela in the USSR,” Metrologia 24, 53–59 (1987); “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
    [CrossRef]
  20. V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).
  21. G. Eppeldauer, “Longterm changes of silicon photodiodes and their use for photometric standardization,” Appl. Opt. 29, 2289–2294 (1990).
    [CrossRef] [PubMed]
  22. Methods of Characterizing the Performance of Radiometers and Photometers, Publ. 53 (Commission Internationale de l’Éclairage, Paris, 1982) (see Ref. 13 for availability).
  23. G. Eppeldauer, J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt. 30, 3091–3099 (1991).
    [CrossRef] [PubMed]
  24. G. Eppeldauer, “Temperature monitored/controlled silicon photodiodes for standardization,” in Surveillance Technologies, S. Gowrinathan, R. J. Mataloni, S. J. Schwartz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1479, 71–77 (1991).
  25. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  26. The characteristics of the same model of monochromator are described in R. D. Saunders, J. B. Shumaker, “Apparatus function of a prism-grating double monochromator,” Appl. Opt. 25, 3710–3714 (1986).
    [CrossRef] [PubMed]
  27. Hamamatsu Corporation, P.O. Box 6910, Bridgewater, N. J. 08807-0910; specific firms and trade names are identified in this paper to specify the experimental procedure adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  28. The authors extend special thanks to Phil Boivin, National Research Council of Canada, and David Nettleton, National Physical Laboratory of Great Britain, for kindness and generosity in supplying some of the filters used in this project. We also thank G. Czibula, PRC Krochmann (Geneststrasse, 6, D-1000 Berlin 62, Germany), for cooperation and assistance in developing the additional filters.
  29. G. Czibula, “Producing a detector with predetermined spectral responsivity,” presented at the International Measurement Confederation 10th International Symposium of the Technical Committee on Photo-Detectors, 20–22 September 1982, Berlin.
  30. T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” in Proceedings of the Second International Conference on New Developments and Applications in Optical Radiometry, M. P. Fox, D. H. Nettleton, ed., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, Bristol, UK, 1989), pp. 121–128.
  31. View Engineering, 1650 N. Voyager Ave., Simi Valley, Calif. 93063.
  32. P. Giacomo, “News from the BIPM,” Metrologia 17, 69–74 (1981); see also H. H. Ku, Uncertainty and Accuracy in Physical Measurements, Natl. Inst. Stand. Tech. Spec. Publ. 805 (1990).
    [CrossRef]
  33. C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference.
  34. K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).
  35. Leeds & Northrup, North Wales, Pa. 19454.
  36. E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).
  37. Incandescent Lamps, Publication TP-110 (General Electric Company, Nela Park, Cleveland, Ohio, 1964).
  38. J. Bonhoure, Metrologia 24, 157–162 (1987); Rapport de la 11e Session, Comité Consultatif de Photométrie et Radiométrie (Bureau International des Poids et Mesures, Sèvres, France, 1986).
    [CrossRef]
  39. Andor, Zakewski, (personal communication).

1993 (1)

The present study follows, to the extent possible, Guide to the Expression of Uncertainty in Measurement, soon to be made final by the International Organization for Standardization, Geneva. NIST has decided to conform to the Guide in all activites by 1994, using an expanded uncertainty coverage factor (as defined in the Guide) of k = 2. Earlier studies at NIST were generally reported with 3σ uncertainties. For consistency in this paper, when a standard uncertainty of the present study is compared with an earlier result, the latter is restated to a 1σ basis. Earlier results are restated to a 2σ basis when the context calls for an expanded uncertainty; see also B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Tech. Tech. Note 1297 (1993).

1991 (1)

1990 (4)

G. Eppeldauer, “Longterm changes of silicon photodiodes and their use for photometric standardization,” Appl. Opt. 29, 2289–2294 (1990).
[CrossRef] [PubMed]

H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10, 10(E) (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

1988 (1)

V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).

1987 (8)

K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).

J. Bonhoure, Metrologia 24, 157–162 (1987); Rapport de la 11e Session, Comité Consultatif de Photométrie et Radiométrie (Bureau International des Poids et Mesures, Sèvres, France, 1986).
[CrossRef]

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the new candela (1979) at NRC,” Metrologia 24, 139–152 (1987).
[CrossRef]

R. L. Booker, D. A. McSparron, Photometric Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-15 (1987).

J. H. Walker, R. D. Saunders, A. T. Hattenburg, “The NBS scale of spectral radiance,” Metrologia 24, 79–88 (1987); Spectral Radiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-1 (1987).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).

J. L. Gardner, “Recent international intercomparison of basic lighting standards,” Light. Aust. 7(4), 21–24 (1987).

V. I. Sapritskii, “A new standard for the candela in the USSR,” Metrologia 24, 53–59 (1987); “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
[CrossRef]

1986 (1)

1983 (2)

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
[CrossRef] [PubMed]

1981 (2)

C. Carreras, A. Corrons, “Absolute spectroradiometric and photometric scales based on an electrically calibrated pyroelectric radiometer,” Appl. Opt. 20, 1174–1177 (1981).
[CrossRef] [PubMed]

P. Giacomo, “News from the BIPM,” Metrologia 17, 69–74 (1981); see also H. H. Ku, Uncertainty and Accuracy in Physical Measurements, Natl. Inst. Stand. Tech. Spec. Publ. 805 (1990).
[CrossRef]

1975 (1)

W. R. Blevin, B. Steiner, “Redefinition of the candela and the lumen,” Metrologia 11, 97–104 (1975).
[CrossRef]

1972 (1)

E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).

Andor,

Andor, Zakewski, (personal communication).

Blevin, W. R.

W. R. Blevin, B. Steiner, “Redefinition of the candela and the lumen,” Metrologia 11, 97–104 (1975).
[CrossRef]

G. Wyszecki, W. R. Blevin, K. G. Kessler, K. D. Mielenz, Principles Governing Photometry, (Bureau International des Poids et Mesures, Sèvres, France, 1983); “Principles governing photometry,” Metrologia 19, 97–101 (1983).

Boivin, L. P.

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the new candela (1979) at NRC,” Metrologia 24, 139–152 (1987).
[CrossRef]

Bonhoure, J.

J. Bonhoure, Metrologia 24, 157–162 (1987); Rapport de la 11e Session, Comité Consultatif de Photométrie et Radiométrie (Bureau International des Poids et Mesures, Sèvres, France, 1986).
[CrossRef]

Booker, R. L.

R. L. Booker, D. A. McSparron, Photometric Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-15 (1987).

Carreras, C.

Corrons, A.

Cromer, C. L.

C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference.

Czibula, G.

G. Czibula, “Producing a detector with predetermined spectral responsivity,” presented at the International Measurement Confederation 10th International Symposium of the Technical Committee on Photo-Detectors, 20–22 September 1982, Berlin.

Duda, C. R.

Eckerle, K. L.

K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).

Eppeldauer, G.

G. Eppeldauer, J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt. 30, 3091–3099 (1991).
[CrossRef] [PubMed]

G. Eppeldauer, “Longterm changes of silicon photodiodes and their use for photometric standardization,” Appl. Opt. 29, 2289–2294 (1990).
[CrossRef] [PubMed]

G. Eppeldauer, “Temperature monitored/controlled silicon photodiodes for standardization,” in Surveillance Technologies, S. Gowrinathan, R. J. Mataloni, S. J. Schwartz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1479, 71–77 (1991).

Gaertner, A. A.

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the new candela (1979) at NRC,” Metrologia 24, 139–152 (1987).
[CrossRef]

Gao, Z.

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

Gardner, J. L.

J. L. Gardner, “Recent international intercomparison of basic lighting standards,” Light. Aust. 7(4), 21–24 (1987).

Giacomo, P.

P. Giacomo, “News from the BIPM,” Metrologia 17, 69–74 (1981); see also H. H. Ku, Uncertainty and Accuracy in Physical Measurements, Natl. Inst. Stand. Tech. Spec. Publ. 805 (1990).
[CrossRef]

Gignac, D. S.

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the new candela (1979) at NRC,” Metrologia 24, 139–152 (1987).
[CrossRef]

Goodman, T. M.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” in Proceedings of the Second International Conference on New Developments and Applications in Optical Radiometry, M. P. Fox, D. H. Nettleton, ed., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, Bristol, UK, 1989), pp. 121–128.

T. M. Goodman, P. J. Key, A Radiometric Realization of the Candela, NPL Rep. QU 75 (National Physical Laboratory, Teddington, UK, 1986); “The NPL radiometric realization of the candela,” Metrologia 25, 29–40 (1988).

Hardis, J. E.

Hattenburg, A. T.

J. H. Walker, R. D. Saunders, A. T. Hattenburg, “The NBS scale of spectral radiance,” Metrologia 24, 79–88 (1987); Spectral Radiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-1 (1987).
[CrossRef]

Hsia, J. J.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).

Jackson, J. K.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).

Jediny, V.

V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).

Kessler, K. G.

G. Wyszecki, W. R. Blevin, K. G. Kessler, K. D. Mielenz, Principles Governing Photometry, (Bureau International des Poids et Mesures, Sèvres, France, 1983); “Principles governing photometry,” Metrologia 19, 97–101 (1983).

Key, P. J.

T. M. Goodman, P. J. Key, A Radiometric Realization of the Candela, NPL Rep. QU 75 (National Physical Laboratory, Teddington, UK, 1986); “The NPL radiometric realization of the candela,” Metrologia 25, 29–40 (1988).

Krempasky, J.

V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).

Kuyatt, C. E.

The present study follows, to the extent possible, Guide to the Expression of Uncertainty in Measurement, soon to be made final by the International Organization for Standardization, Geneva. NIST has decided to conform to the Guide in all activites by 1994, using an expanded uncertainty coverage factor (as defined in the Guide) of k = 2. Earlier studies at NIST were generally reported with 3σ uncertainties. For consistency in this paper, when a standard uncertainty of the present study is compared with an earlier result, the latter is restated to a 1σ basis. Earlier results are restated to a 2σ basis when the context calls for an expanded uncertainty; see also B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Tech. Tech. Note 1297 (1993).

Mao, S.

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

Martin, J. E.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” in Proceedings of the Second International Conference on New Developments and Applications in Optical Radiometry, M. P. Fox, D. H. Nettleton, ed., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, Bristol, UK, 1989), pp. 121–128.

McSparron, D. A.

R. L. Booker, D. A. McSparron, Photometric Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-15 (1987).

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).

E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).

Mielenz, K. D.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).

G. Wyszecki, W. R. Blevin, K. G. Kessler, K. D. Mielenz, Principles Governing Photometry, (Bureau International des Poids et Mesures, Sèvres, France, 1983); “Principles governing photometry,” Metrologia 19, 97–101 (1983).

Mohan, K.

E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).

Nemecek, P.

V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).

Parr, A. C.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Piao, D.

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

Preston-Thomas, H.

H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10, 10(E) (1990).
[CrossRef]

Sapritskii, V. I.

V. I. Sapritskii, “A new standard for the candela in the USSR,” Metrologia 24, 53–59 (1987); “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
[CrossRef]

Saunders, R. D.

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

J. H. Walker, R. D. Saunders, A. T. Hattenburg, “The NBS scale of spectral radiance,” Metrologia 24, 79–88 (1987); Spectral Radiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-1 (1987).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).

The characteristics of the same model of monochromator are described in R. D. Saunders, J. B. Shumaker, “Apparatus function of a prism-grating double monochromator,” Appl. Opt. 25, 3710–3714 (1986).
[CrossRef] [PubMed]

Schaefer, A. R.

E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).

Shipp, B. D.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” in Proceedings of the Second International Conference on New Developments and Applications in Optical Radiometry, M. P. Fox, D. H. Nettleton, ed., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, Bristol, UK, 1989), pp. 121–128.

Shumaker, J. B.

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

The characteristics of the same model of monochromator are described in R. D. Saunders, J. B. Shumaker, “Apparatus function of a prism-grating double monochromator,” Appl. Opt. 25, 3710–3714 (1986).
[CrossRef] [PubMed]

Steiner, B.

W. R. Blevin, B. Steiner, “Redefinition of the candela and the lumen,” Metrologia 11, 97–104 (1975).
[CrossRef]

Taylor, B. N.

The present study follows, to the extent possible, Guide to the Expression of Uncertainty in Measurement, soon to be made final by the International Organization for Standardization, Geneva. NIST has decided to conform to the Guide in all activites by 1994, using an expanded uncertainty coverage factor (as defined in the Guide) of k = 2. Earlier studies at NIST were generally reported with 3σ uncertainties. For consistency in this paper, when a standard uncertainty of the present study is compared with an earlier result, the latter is restated to a 1σ basis. Earlier results are restated to a 2σ basis when the context calls for an expanded uncertainty; see also B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Tech. Tech. Note 1297 (1993).

Turner, N. P.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” in Proceedings of the Second International Conference on New Developments and Applications in Optical Radiometry, M. P. Fox, D. H. Nettleton, ed., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, Bristol, UK, 1989), pp. 121–128.

Walker, J. H.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).

J. H. Walker, R. D. Saunders, A. T. Hattenburg, “The NBS scale of spectral radiance,” Metrologia 24, 79–88 (1987); Spectral Radiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-1 (1987).
[CrossRef]

Walsh, J. W. T.

J. W. T. Walsh, Photometry, 3rd ed. (Constable, London, 1958), Chap. 1.

Wang, Z.

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

Weidner, V. R.

K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).

Wyszecki, G.

G. Wyszecki, W. R. Blevin, K. G. Kessler, K. D. Mielenz, Principles Governing Photometry, (Bureau International des Poids et Mesures, Sèvres, France, 1983); “Principles governing photometry,” Metrologia 19, 97–101 (1983).

Yang, C.

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

Zakewski,

Andor, Zakewski, (personal communication).

Zalewski, E. F.

E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
[CrossRef] [PubMed]

E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).

Zatkovic, J.

V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).

Appl. Opt. (5)

Cesk, Cas. Fys. A (1)

V. Jediny, J. Krempasky, J. Zatkovic, P. Nemecek, “Luminous intensity measurement according to the new definition of the candela,” Cesk, Cas. Fys. A 38(6), 601–611 (1988).

Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (1)

The present study follows, to the extent possible, Guide to the Expression of Uncertainty in Measurement, soon to be made final by the International Organization for Standardization, Geneva. NIST has decided to conform to the Guide in all activites by 1994, using an expanded uncertainty coverage factor (as defined in the Guide) of k = 2. Earlier studies at NIST were generally reported with 3σ uncertainties. For consistency in this paper, when a standard uncertainty of the present study is compared with an earlier result, the latter is restated to a 1σ basis. Earlier results are restated to a 2σ basis when the context calls for an expanded uncertainty; see also B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Tech. Tech. Note 1297 (1993).

J. Res. Natl. Inst. Stand. Technol. (1)

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Light. Aust. (1)

J. L. Gardner, “Recent international intercomparison of basic lighting standards,” Light. Aust. 7(4), 21–24 (1987).

Metrologia (8)

V. I. Sapritskii, “A new standard for the candela in the USSR,” Metrologia 24, 53–59 (1987); “National primary radiometric standards of the USSR,” Metrologia 27, 53–60 (1990).
[CrossRef]

P. Giacomo, “News from the BIPM,” Metrologia 17, 69–74 (1981); see also H. H. Ku, Uncertainty and Accuracy in Physical Measurements, Natl. Inst. Stand. Tech. Spec. Publ. 805 (1990).
[CrossRef]

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the new candela (1979) at NRC,” Metrologia 24, 139–152 (1987).
[CrossRef]

Z. Gao, Z. Wang, D. Piao, S. Mao, C. Yang, “Realization of the candela by electrically calibrated radiometers,” Metrologia 19, 85–92 (1983).
[CrossRef]

H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10, 10(E) (1990).
[CrossRef]

J. H. Walker, R. D. Saunders, A. T. Hattenburg, “The NBS scale of spectral radiance,” Metrologia 24, 79–88 (1987); Spectral Radiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-1 (1987).
[CrossRef]

W. R. Blevin, B. Steiner, “Redefinition of the candela and the lumen,” Metrologia 11, 97–104 (1975).
[CrossRef]

J. Bonhoure, Metrologia 24, 157–162 (1987); Rapport de la 11e Session, Comité Consultatif de Photométrie et Radiométrie (Bureau International des Poids et Mesures, Sèvres, France, 1986).
[CrossRef]

Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971) (1)

E. F. Zalewski, A. R. Schaefer, K. Mohan, D. A. McSparron, Optical Radiation Measurements: Photometric Instrumentation and Research (1970 to 1971), Natl. Bur. Stand. (U.S.) Tech. Note 594-2, 22–33 (1972).

Photometric Calibrations (1)

R. L. Booker, D. A. McSparron, Photometric Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-15 (1987).

Regular Spectral Transmittance (1)

K. L. Eckerle, J. J. Hsia, K. D. Mielenz, V. R. Weidner, Regular Spectral Transmittance, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-6 (1987).

Spectral Irradiance Calibrations (1)

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral Irradiance Calibrations, Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20 (1987).

Other (17)

Comptes Rendus des Séances de la 16e Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Sèvres, France, 1979), session 16, p. 100; see also P. Giacomo, “News from BIPM,” Metrologia 16, 55–61 (1980) [corrected English translation 17, 74 (1981)].
[CrossRef]

J. W. T. Walsh, Photometry, 3rd ed. (Constable, London, 1958), Chap. 1.

Comptes Rendus des Séances de la Neuviéme Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Paris, 1949), session 9, p. 53.

G. Wyszecki, W. R. Blevin, K. G. Kessler, K. D. Mielenz, Principles Governing Photometry, (Bureau International des Poids et Mesures, Sèvres, France, 1983); “Principles governing photometry,” Metrologia 19, 97–101 (1983).

The Basis of Physical Photometry, Publication 18.2 (Commission Internationale de l’Éclairage, Paris, 1983). (Currently available through the U.S. National Committee of the CIE, c/o T. M. Lemons, TLA-Lighting Consultants, Inc., 72 Loring Ave., Salem, Mass. 01970).

T. M. Goodman, P. J. Key, A Radiometric Realization of the Candela, NPL Rep. QU 75 (National Physical Laboratory, Teddington, UK, 1986); “The NPL radiometric realization of the candela,” Metrologia 25, 29–40 (1988).

Leeds & Northrup, North Wales, Pa. 19454.

Incandescent Lamps, Publication TP-110 (General Electric Company, Nela Park, Cleveland, Ohio, 1964).

C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference.

Methods of Characterizing the Performance of Radiometers and Photometers, Publ. 53 (Commission Internationale de l’Éclairage, Paris, 1982) (see Ref. 13 for availability).

G. Eppeldauer, “Temperature monitored/controlled silicon photodiodes for standardization,” in Surveillance Technologies, S. Gowrinathan, R. J. Mataloni, S. J. Schwartz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1479, 71–77 (1991).

Hamamatsu Corporation, P.O. Box 6910, Bridgewater, N. J. 08807-0910; specific firms and trade names are identified in this paper to specify the experimental procedure adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

The authors extend special thanks to Phil Boivin, National Research Council of Canada, and David Nettleton, National Physical Laboratory of Great Britain, for kindness and generosity in supplying some of the filters used in this project. We also thank G. Czibula, PRC Krochmann (Geneststrasse, 6, D-1000 Berlin 62, Germany), for cooperation and assistance in developing the additional filters.

G. Czibula, “Producing a detector with predetermined spectral responsivity,” presented at the International Measurement Confederation 10th International Symposium of the Technical Committee on Photo-Detectors, 20–22 September 1982, Berlin.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” in Proceedings of the Second International Conference on New Developments and Applications in Optical Radiometry, M. P. Fox, D. H. Nettleton, ed., Vol. 92 of Institute of Physics Conference Series (Institute of Physics, Bristol, UK, 1989), pp. 121–128.

View Engineering, 1650 N. Voyager Ave., Simi Valley, Calif. 93063.

Andor, Zakewski, (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Application of a photometer to luminous intensity measurement as a progression. (a) When the light beam underfills the entrance aperture, the photometer measures luminous flux (lumens), the photometric analog to radiant power. The responsivity of our detectors was tested in at least seven positions, as shown. (b) When the light beam overfills the entrance aperture, the photometer measures illuminance [lux, (lumens per square meter of the aperture)]. (c) When the photometer is used with a point light source at a distance, the aperture area and the distance to the source combine to define a solid angle. The photometer then measures the luminous intensity [candela (lumens per steradian)] of the source.

Fig. 2
Fig. 2

Photometer design. A filter modifies the spectral response of a silicon photodiode to replicate as closely as possible the 1924 CIE Spectral Luminous Efficiency Function for Photopic Vision.

Fig. 3
Fig. 3

Facility used to calibrate the photometric detectors with visible and IR radiation. The UV instrument is similar.

Fig. 4
Fig. 4

(a) Responsivity of the filtered photodiode packages with emphasis on their behavior in the UV and IR. One spot in the center of the aperture is probed. The estimated error at this spot is commensurate with the width of the curve in the visible, with the apparent scatter of the data in the IR, and shown by error bars in the UV. Representative packages: photometer 2, NRC, dashed curve; photometer 3, NPL, dotted curve; photometer 5, PRC, solid curve. (b) Comparison of responsivity at the center spot to the average of many spots over the face of the aperture. Data taken at 50-nm intervals are interpolated by polynomial fits. The correction factor converts the responsivity at the center to the average responsivity over the face of the aperture. The curves are as in (a). (c) Responsivity of the filtered photodiode packages. The curves are as in (a) after the correction in (b) has been applied.

Fig. 5
Fig. 5

Effect on photometer calibration when sources at different temperatures are viewed. The required correction is reported as F(Temp)/F(2856 K). Representative packages: Photometer 2, dashed curve; photometer 3, dotted curve; photometer 5, solid curve; photometer 8, dashed–dot curve.

Fig. 6
Fig. 6

New NIST photometry bench.

Fig. 7
Fig. 7

Drift and noise in the output of representative standard lamps: (a) During one lighting of an Osram Wi 41/G lamp, ●; a FEL, ○; and an inside-frosted T-20 lamp, ▲. (b) During five consecutive lightings of the Osram lamp.

Tables (3)

Tables Icon

Table 1 Summary of the Photometers

Tables Icon

Table 2 Uncertainty Budget for Illuminance Calibration

Tables Icon

Table 3 Uncertainty Budget for Luminous Intensity Measurements

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Φ v ( lm ) = K m λ Φ e ( λ ) V ( λ ) d λ ,
I ( A ) = λ Φ e ( λ ) s ( λ ) d λ ,
s ( λ ) ( A / W ) = s ( 555 ) s n ( λ ) ,
s v ( A / lm ) = I Φ v = s ( 555 ) K m λ Φ e ( λ ) s n ( λ ) d λ λ Φ e ( λ ) V ( λ ) d λ .
F = λ Φ e ( λ ) V ( λ ) d λ λ Φ e ( λ ) s n ( λ ) d λ .
Φ v ( lm ) = K m F I s ( 555 ) .
E v ( lx ) = K m F I s ( 555 ) A .
I v ( cd ) = K m F I r 2 s ( 555 ) A .
E v = I v ( r - r 0 ) 2 ,

Metrics