Abstract

The single-scattering phase functions of polyhedral-shaped ice particles are calculated by means of geometric optics and the diffraction theory. Particle orientation is assumed to be random in space. Particle shapes are taken both from ice-crystal classifications and from in situ measurements. The effects of particle concavity on the scattering signature are discussed in detail. A common feature is the pronounced forward-scattering peak, as well as different halo peaks that are due to a minimum deviation at corresponding ice prisms. An unusual halo phenomena, which results from a minimum deviation in a double-prism configuration, is found and verified. The comparison of different particle types shows that backscattering is a sensitive indicator for the identification of types of ice-crystal. Aggregate particles, like bullet rosettes, basically show the scattering characteristics of their individual components.

© 1993 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription