Abstract

Rotational Raman scattering of light from the second harmonic of a Nd:YAG laser is used to measure atmospheric temperature at altitudes of 3 to 20 km. The method relies on taking the ratio of light passed by two filters that differ slightly in their passbands, and is therefore insensitive to variations in atmospheric transmission. The calibration of the experiment relies on only spectroscopic measurements and not on normalizing to nearby radiosondes, as has been the previous practice with this kind of experiment. Comparisons with radiosonde profiles show excellent agreement to within the precision of the measurements and the variability of the atmosphere. The main application of the experiment lies in its ability to measure a time series of temperature profiles with good height resolution throughout a night. Examples of such series that show the passage of a tropopause fold above the lidar are presented.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  2. A. Cohen, J. A. Cooney, K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976).
    [CrossRef] [PubMed]
  3. R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
    [CrossRef]
  4. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]
  5. V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).
  6. M.-L. Chanin, A. Hauchecorne, D. Nedeljkovic, “Temperature measurement in the presence of PSCs by rotational Raman lidar,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, eds., Air Pollution Rep. 34 (Commission of the European Community, Brussels, 1990), pp. 207–209.
  7. C. M. Penney, R. L. McPeters, M. Lapp, “Absolute rotational Raman cross-section for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  8. R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry–Perot étalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
    [CrossRef]
  9. D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
    [CrossRef]
  10. M. A. Buldakov, I.I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spektrosk. 46, 867–869 (1979).
  11. R. L. Rowell, G. M. Aval, “Rayleigh-Raman depolarisation of laser light scattered by gases,” J. Chem. Phys. 54, 1960–1964 (1971).
    [CrossRef]
  12. G. R. Alms, A. K. Burnham, W. H. Flygare, “Measurement of the dispersion in polarisability anisotropics,” J. Chem. Phys. 63, 3321–3326 (1975).
    [CrossRef]
  13. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
    [CrossRef]
  14. R. L. Armstrong, “Analysis of Fabry–Perot interferograms of periodic spectra,” J. Opt. Soc. Am. 64, 871–876 (1974).
    [CrossRef]

1988 (1)

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

1985 (1)

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

1983 (1)

1979 (2)

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

M. A. Buldakov, I.I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spektrosk. 46, 867–869 (1979).

1976 (1)

1975 (1)

G. R. Alms, A. K. Burnham, W. H. Flygare, “Measurement of the dispersion in polarisability anisotropics,” J. Chem. Phys. 63, 3321–3326 (1975).
[CrossRef]

1974 (2)

1972 (1)

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

1971 (2)

R. L. Rowell, G. M. Aval, “Rayleigh-Raman depolarisation of laser light scattered by gases,” J. Chem. Phys. 54, 1960–1964 (1971).
[CrossRef]

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry–Perot étalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

1969 (1)

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Alms, G. R.

G. R. Alms, A. K. Burnham, W. H. Flygare, “Measurement of the dispersion in polarisability anisotropics,” J. Chem. Phys. 63, 3321–3326 (1975).
[CrossRef]

Armstrong, R. L.

Arshinov, Yu.

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

Arshinov, Yu. F.

Aval, G. M.

R. L. Rowell, G. M. Aval, “Rayleigh-Raman depolarisation of laser light scattered by gases,” J. Chem. Phys. 54, 1960–1964 (1971).
[CrossRef]

Bobrovnikov, S.

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

Bobrovnikov, S. M.

Buldakov, M. A.

M. A. Buldakov, I.I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spektrosk. 46, 867–869 (1979).

Burnham, A. K.

G. R. Alms, A. K. Burnham, W. H. Flygare, “Measurement of the dispersion in polarisability anisotropics,” J. Chem. Phys. 63, 3321–3326 (1975).
[CrossRef]

Butcher, R. J.

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry–Perot étalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Chanin, M.-L.

M.-L. Chanin, A. Hauchecorne, D. Nedeljkovic, “Temperature measurement in the presence of PSCs by rotational Raman lidar,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, eds., Air Pollution Rep. 34 (Commission of the European Community, Brussels, 1990), pp. 207–209.

Cohen, A.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

A. Cohen, J. A. Cooney, K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15, 2896–2901 (1976).
[CrossRef] [PubMed]

Cooney, J.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Cooney, J. A.

Farina, J.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Flygare, W. H.

G. R. Alms, A. K. Burnham, W. H. Flygare, “Measurement of the dispersion in polarisability anisotropics,” J. Chem. Phys. 63, 3321–3326 (1975).
[CrossRef]

Geller, K.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Geller, K. N.

Gill, R.

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

Hauchecorne, A.

M.-L. Chanin, A. Hauchecorne, D. Nedeljkovic, “Temperature measurement in the presence of PSCs by rotational Raman lidar,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, eds., Air Pollution Rep. 34 (Commission of the European Community, Brussels, 1990), pp. 207–209.

Hunt, J. L.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Ivanov, L.

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

Jones, W. J.

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry–Perot étalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Lapp, M.

Matrosov, I.I.

M. A. Buldakov, I.I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spektrosk. 46, 867–869 (1979).

McCubbin, T. K.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

McPeters, R. L.

Mitev, V.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

Mitev, V. M.

Nedeljkovic, D.

M.-L. Chanin, A. Hauchecorne, D. Nedeljkovic, “Temperature measurement in the presence of PSCs by rotational Raman lidar,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, eds., Air Pollution Rep. 34 (Commission of the European Community, Brussels, 1990), pp. 207–209.

Penney, C. M.

Pole, S. R.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Popova, T. N.

M. A. Buldakov, I.I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spektrosk. 46, 867–869 (1979).

Renschler, D. L.

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

Rowell, R. L.

R. L. Rowell, G. M. Aval, “Rayleigh-Raman depolarisation of laser light scattered by gases,” J. Chem. Phys. 54, 1960–1964 (1971).
[CrossRef]

Simeonov, V.

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

Thomas, L.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Vaughan, G.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Wareing, D. P.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Willetts, D. V.

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry–Perot étalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Zuev, V. E.

Appl. Opt. (2)

Bulg. J. Phys. (1)

V. Mitev, V. Simeonov, L. Ivanov, Yu. Arshinov, S. Bobrovnikov, “Raman lidar measurements of atmospheric temperature profiles,” Bulg. J. Phys. 12, 429–433 (1985).

J. Appl. Meteorol. (2)

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

R. Gill, K. Geller, J. Farina, J. Cooney, A. Cohen, “Measurement of atmospheric temperature profiles using Raman lidar,” J. Appl. Meteorol. 18, 225–227 (1979).
[CrossRef]

J. Chem. Phys. (2)

R. L. Rowell, G. M. Aval, “Rayleigh-Raman depolarisation of laser light scattered by gases,” J. Chem. Phys. 54, 1960–1964 (1971).
[CrossRef]

G. R. Alms, A. K. Burnham, W. H. Flygare, “Measurement of the dispersion in polarisability anisotropics,” J. Chem. Phys. 63, 3321–3326 (1975).
[CrossRef]

J. Mol. Spectrosc. (1)

D. L. Renschler, J. L. Hunt, T. K. McCubbin, S. R. Pole, “Triplet structure of the rotational Raman spectrum of oxygen,” J. Mol. Spectrosc. 31, 173–176 (1969).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Spektrosk. (1)

M. A. Buldakov, I.I. Matrosov, T. N. Popova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spektrosk. 46, 867–869 (1979).

Proc. R. Soc. London Ser. A (1)

R. J. Butcher, D. V. Willetts, W. J. Jones, “On the use of a Fabry–Perot étalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman back-scatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Other (1)

M.-L. Chanin, A. Hauchecorne, D. Nedeljkovic, “Temperature measurement in the presence of PSCs by rotational Raman lidar,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, eds., Air Pollution Rep. 34 (Commission of the European Community, Brussels, 1990), pp. 207–209.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectrum of rotational Raman lines backscattered from the atmosphere following excitation at 532.05 nm, together with the filter profiles used in this work. Top, spectrum at 270 K; bottom, spectrum at 210 K. For clarity, the Rayleigh–Mie line has been omitted from these figures.

Fig. 2
Fig. 2

Salient features of receiver optics.

Fig. 3
Fig. 3

Sensitivity of temperature measurement to broadening of the Raman lines (e.g., by the finite width of the laser line).

Fig. 4
Fig. 4

Calibration curve: ratio of powers in the two channels as a function of temperature.

Fig. 5
Fig. 5

Comparison between lidar temperature profile measured between 2100 GMT on 19 November 1991 and 0700 on the 20th and a radiosonde launched from Aberystwyth at 1100 on the 20th. Dashed curves on either side of the lidar profile denote 1σ precision limits.

Fig. 6
Fig. 6

Comparison between a lidar temperature profile measured between 2200 GMT on 11 December 1991 and 0200 on the 12th and a radiosonde launched from Aberystwyth at 1100 on the 12th. Dashed curves on either side of the lidar profile denote 1σ precision limits.

Fig. 7
Fig. 7

Temperature cross section in degrees Kelvin during the night of 19–20 November 1991 in the form of differences between individual 17-min profiles and a linear fit to the whole-night average.

Fig. 8
Fig. 8

Potential temperature cross section for 19–20 November 1991.

Fig. 9
Fig. 9

Like Fig. 7 but for 11–12 December 1991.

Tables (2)

Tables Icon

Table 1 Values of Rotational Constant B0 and Centrifugal Distortion D0 for M2 and O2, from Butcher et al.a

Tables Icon

Table 2 Specification of Interference Filters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P J = 3 ( J + 1 ) ( J + 2 ) 2 ( 2 J + 3 ) 2 hc B 0 ( 2 I + 1 ) 2 kT × ϖ J 4 γ 2 g J exp [ hc B 0 J ( J + 1 ) kT ] ,
ϖ J = ( 4 J + 6 ) B 0 D 0 [ 6 J + 9 + ( 2 J + 3 ) 3 ] ,
R ( T ) = i x i j P ij ( T ) N ij i x i j P ij ( T ) F ij ,
P = R au R ap × R cp R cu ,

Metrics