Abstract

Laser repair of dynamic random-access memories is commercially significant at the 1-Mbit density and larger. The window of acceptable laser parameters required to repair these parts typically decreases with each successive device generation because of increased variations in oxide thickness. A simple single-zone binary optic was developed to modify the beam profile from Gaussian to flattop. Experiments performed on actual dynamic random-access memory parts verified a large increase in the laser energy process window because of the shaped beam profile.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Chlipala, L. M. Scarfone, “Reliability aspects of laser programmable redundancy: infrared versus green, polysilicon versus suicide,” in Proceedings of the IEEE Reliability Physics Symposium (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 163–170.
    [CrossRef]
  2. J. D. Chlipala, L. M. Scarfone, “Computer simulation of target link explosion in laser programmable redundancy for silicon memory,” J. Mater. Res. 1, 368–381 (1986).
    [CrossRef]
  3. C. Y. Lu, J. D. Chlipala, L. M. Scarfone, “Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair,” IEEE Trans. Electron Devices 36, 1056–1061 (1989).
    [CrossRef]
  4. W. B. Veldkamp, C. J. Kastner, “Beam profile shaping for laser radars that use detector arrays,” Appl. Opt. 21, 345–356 (1982).
    [CrossRef] [PubMed]
  5. W. B. Veldkamp, “Laser beam profile shaping with interlaced binary diffraction gratings,” Appl. Opt. 21, 3209 (1982).
    [CrossRef] [PubMed]

1989 (1)

C. Y. Lu, J. D. Chlipala, L. M. Scarfone, “Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair,” IEEE Trans. Electron Devices 36, 1056–1061 (1989).
[CrossRef]

1986 (1)

J. D. Chlipala, L. M. Scarfone, “Computer simulation of target link explosion in laser programmable redundancy for silicon memory,” J. Mater. Res. 1, 368–381 (1986).
[CrossRef]

1982 (2)

Chlipala, J. D.

C. Y. Lu, J. D. Chlipala, L. M. Scarfone, “Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair,” IEEE Trans. Electron Devices 36, 1056–1061 (1989).
[CrossRef]

J. D. Chlipala, L. M. Scarfone, “Computer simulation of target link explosion in laser programmable redundancy for silicon memory,” J. Mater. Res. 1, 368–381 (1986).
[CrossRef]

J. D. Chlipala, L. M. Scarfone, “Reliability aspects of laser programmable redundancy: infrared versus green, polysilicon versus suicide,” in Proceedings of the IEEE Reliability Physics Symposium (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 163–170.
[CrossRef]

Kastner, C. J.

Lu, C. Y.

C. Y. Lu, J. D. Chlipala, L. M. Scarfone, “Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair,” IEEE Trans. Electron Devices 36, 1056–1061 (1989).
[CrossRef]

Scarfone, L. M.

C. Y. Lu, J. D. Chlipala, L. M. Scarfone, “Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair,” IEEE Trans. Electron Devices 36, 1056–1061 (1989).
[CrossRef]

J. D. Chlipala, L. M. Scarfone, “Computer simulation of target link explosion in laser programmable redundancy for silicon memory,” J. Mater. Res. 1, 368–381 (1986).
[CrossRef]

J. D. Chlipala, L. M. Scarfone, “Reliability aspects of laser programmable redundancy: infrared versus green, polysilicon versus suicide,” in Proceedings of the IEEE Reliability Physics Symposium (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 163–170.
[CrossRef]

Veldkamp, W. B.

Appl. Opt. (2)

IEEE Trans. Electron Devices (1)

C. Y. Lu, J. D. Chlipala, L. M. Scarfone, “Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair,” IEEE Trans. Electron Devices 36, 1056–1061 (1989).
[CrossRef]

J. Mater. Res. (1)

J. D. Chlipala, L. M. Scarfone, “Computer simulation of target link explosion in laser programmable redundancy for silicon memory,” J. Mater. Res. 1, 368–381 (1986).
[CrossRef]

Other (1)

J. D. Chlipala, L. M. Scarfone, “Reliability aspects of laser programmable redundancy: infrared versus green, polysilicon versus suicide,” in Proceedings of the IEEE Reliability Physics Symposium (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 163–170.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Debris caused by a thick oxide layer and low laser energy (1.5 μJ); (b) damage to wafer with a thin oxide layer and high laser energy (2.0 μJ); (c) links properly cut, showing no debris or damage.

Fig. 2
Fig. 2

TLSI M2X8 optical layout (simplified): AOM, acousto-optical modulator.

Fig. 3
Fig. 3

Binary diffractive optic (phase plate).

Fig. 4
Fig. 4

(a) Gaussian electric-field amplitude phase reversed at various radii (r) from the beam center, (b) Fast Fourier transform (FFT) of phase-reversed Gaussian electric-field amplitude in (a).

Fig. 5
Fig. 5

(a) Laser beam intensity profile at the focal plane (work surface) with the phase plate installed and adjusted for the best flattop response; (b) original Gaussian beam intensity profile at the focal plane (work surface) before the phase plate was installed.

Fig. 6
Fig. 6

Intensity profiles at the following distances above or below the focal plane: (a) 15 μm, (b) 7 μm, (c) 0 μm, (d) −7 μm, (e) −15 μm.

Fig. 7
Fig. 7

Different intensity profile spot shapes obtained by varying the beam diameter passing through a single 1.5-mm-diameter phase plate.

Tables (1)

Tables Icon

Table 1 Spot Size and Depth of Focus Achieved for Various Diameter Phase Plates

Metrics