Abstract

High-frequency gratings with rectangular-groove profiles are used to generate high-efficiency beam splitters and beam deflectors. The effects of the grating design parameters, i.e., period, groove depth, duty cycle, number of phase levels, and polarization state (TE and TM) of the incoming signal, are considered. The case of the binary beam splitter grating is analyzed by using rigorous electromagnetic grating analysis. Fabrication techniques are presented in which three different lithographic techniques are considered (optical contact, deep-UV stepper reduction, and electron-beam direct write). Experimental results of 97% efficiency for the beam splitter grating and up to 80% for the beam deflector grating are reported.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  2. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reducing alignment and chromatic sensitivity of holographic optical interconnects with substrate-mode holograms,” Appl. Opt. 28, 4939–4944 (1989); M. R. Wang, G. J. Sonek, R. T. Sonek, R. T. Ghen, T. Jannson, “Large fan-out optical interconnects using thick holographic gratings and substrate wave propagation,” Appl. Opt. 31, 236–248 (1992).
    [CrossRef] [PubMed]
  3. J. Jahns, Y. H. Lee, C. A. Burrus, J. L. Jewell, “Optical interconnect using top-surface-emitting microlasers and planar optics,” Appl. Opt. 31, 592–597 (1992).
    [CrossRef] [PubMed]
  4. J. Jahns, “Integrated optical imaging system,” Appl. Opt. 29, 1998 (1990).
    [CrossRef] [PubMed]
  5. S. J. Walker, J. Jahns, “Optical clock distribution using integrated free-space optics,” Opt. Commun. 90, 359–371 (1992).
    [CrossRef]
  6. H. Hosokawa, T. Yamashita, “ZnS micro-Fresnel lens and its uses,” Appl. Opt. 29, 5106–5110 (1990).
    [CrossRef] [PubMed]
  7. J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).
  8. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  9. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
    [CrossRef]
  10. J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la détermination numérique dès effectitics de certains réseaux diélectriques profound,” J. Opt. (Paris) 14, 273–288 (1983).
    [CrossRef]
  11. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. (to be published).
  12. Y. Nakata, M. Koshiba, “Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings,” J. Opt. Soc. Am. A 7, 1494–1502 (1990).
    [CrossRef]
  13. Y. Nakata, M. Koshiba, “Finite-element analysis of plane wave diffraction from metallic grating with arbitrary complex permittivity,” Trans. Inst. Electron. Inf. Commun. Eng. J70-C, 1513–1522 (1987).
  14. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  15. L. Li, C. W. Haggans, “On the convergence of the coupled-wave approach for lamellar diffraction gratings,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 75–76.
  16. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin-film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  17. C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon exitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
    [CrossRef]
  18. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982) pp. 194–200.
  19. E. Hasman, N. Davidson, A. A. Friesem, “Heterostructure multilevel binary optics,” Opt. Lett. 16, 1460–1462 (1991).
    [CrossRef] [PubMed]
  20. J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performances,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1555, 80–88 (1991).
  21. D. J. Elliot, Integrated Circuit Fabrication Technology (McGraw-Hill, New York, 1989).
  22. V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
    [CrossRef]
  23. T. Fujita, H. Nishihara, J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
    [CrossRef] [PubMed]
  24. T. Shiono, H. Ogawa, “Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography,” Appl. Opt. 30, 3643–3649 (1991).
    [CrossRef] [PubMed]
  25. O. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAs/InP light emitting diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
    [CrossRef]
  26. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

1992 (3)

S. J. Walker, J. Jahns, “Optical clock distribution using integrated free-space optics,” Opt. Commun. 90, 359–371 (1992).
[CrossRef]

J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

J. Jahns, Y. H. Lee, C. A. Burrus, J. L. Jewell, “Optical interconnect using top-surface-emitting microlasers and planar optics,” Appl. Opt. 31, 592–597 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (4)

1989 (3)

1987 (1)

Y. Nakata, M. Koshiba, “Finite-element analysis of plane wave diffraction from metallic grating with arbitrary complex permittivity,” Trans. Inst. Electron. Inf. Commun. Eng. J70-C, 1513–1522 (1987).

1986 (1)

1984 (1)

O. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAs/InP light emitting diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
[CrossRef]

1983 (1)

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la détermination numérique dès effectitics de certains réseaux diélectriques profound,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

1982 (1)

1981 (1)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

1976 (1)

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon exitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

Arakawa, E. T.

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon exitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Bennewitz, J. H.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

Brenner, K.-H.

J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Burrus, C. A.

Cadilhac, M.

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la détermination numérique dès effectitics de certains réseaux diélectriques profound,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

Clemons, J. T.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Cox, J. A.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performances,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1555, 80–88 (1991).

Craig, M. S.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

Dàschner, W.

J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Davidson, N.

Doubrava, C.

J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Elliot, D. J.

D. J. Elliot, Integrated Circuit Fabrication Technology (McGraw-Hill, New York, 1989).

Escher, G. C.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Feldman, M.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Firtion, V. A.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Friesem, A. A.

Fritz, B.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performances,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1555, 80–88 (1991).

Fujita, T.

Gaylord, T. K.

Haggans, C. W.

L. Li, C. W. Haggans, “On the convergence of the coupled-wave approach for lamellar diffraction gratings,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 75–76.

Hasman, E.

Hetherington, D.

Hosokawa, H.

Huang, A.

Huang, Y. T.

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982) pp. 194–200.

Jahns, J.

Jewell, J. L.

Jewell, T. E.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Kato, M.

Koshiba, M.

Y. Nakata, M. Koshiba, “Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings,” J. Opt. Soc. Am. A 7, 1494–1502 (1990).
[CrossRef]

Y. Nakata, M. Koshiba, “Finite-element analysis of plane wave diffraction from metallic grating with arbitrary complex permittivity,” Trans. Inst. Electron. Inf. Commun. Eng. J70-C, 1513–1522 (1987).

Kostuk, R. K.

Koyama, J.

Lee, Y. H.

Li, L.

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. (to be published).

L. Li, C. W. Haggans, “On the convergence of the coupled-wave approach for lamellar diffraction gratings,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 75–76.

McPhedran, R. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

Merklein, T.

J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Moharam, M. G.

Nakata, Y.

Y. Nakata, M. Koshiba, “Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings,” J. Opt. Soc. Am. A 7, 1494–1502 (1990).
[CrossRef]

Y. Nakata, M. Koshiba, “Finite-element analysis of plane wave diffraction from metallic grating with arbitrary complex permittivity,” Trans. Inst. Electron. Inf. Commun. Eng. J70-C, 1513–1522 (1987).

Nishihara, H.

Ogawa, H.

Petit, R.

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la détermination numérique dès effectitics de certains réseaux diélectriques profound,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

Pol, V.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Ritchie, R. H.

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon exitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Shiono, T.

Suratteau, J. Y.

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la détermination numérique dès effectitics de certains réseaux diélectriques profound,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Wada, O.

O. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAs/InP light emitting diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
[CrossRef]

Walker, S. J.

S. J. Walker, J. Jahns, “Optical clock distribution using integrated free-space optics,” Opt. Commun. 90, 359–371 (1992).
[CrossRef]

J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin-film deposition,” Appl. Opt. 29, 931–936 (1990).
[CrossRef] [PubMed]

Werner, T.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performances,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1555, 80–88 (1991).

Wheeler, C. E.

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon exitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Willcomb, B. E.

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

Yamashita, T.

Appl. Opt. (7)

J. Electrochem. Soc. (1)

O. Wada, “Ion-beam etching of InP and its application to the fabrication of high radiance InGaAs/InP light emitting diodes,” J. Electrochem. Soc. 131, 2373–2380 (1984).
[CrossRef]

J. Opt. (Paris) (1)

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la détermination numérique dès effectitics de certains réseaux diélectriques profound,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Acta (1)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 22, 1087–1102 (1981).
[CrossRef]

Opt. Commun. (1)

S. J. Walker, J. Jahns, “Optical clock distribution using integrated free-space optics,” Opt. Commun. 90, 359–371 (1992).
[CrossRef]

Opt. Eng. (1)

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Opt. Lett. (2)

Optik (1)

J. Jahns, K.-H. Brenner, W. Dàschner, C. Doubrava, T. Merklein, “Replication of diffractive micro-optical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Phys. Rev. B (1)

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon exitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Trans. Inst. Electron. Inf. Commun. Eng. (1)

Y. Nakata, M. Koshiba, “Finite-element analysis of plane wave diffraction from metallic grating with arbitrary complex permittivity,” Trans. Inst. Electron. Inf. Commun. Eng. J70-C, 1513–1522 (1987).

Other (7)

R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[CrossRef]

L. Li, C. W. Haggans, “On the convergence of the coupled-wave approach for lamellar diffraction gratings,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 75–76.

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982) pp. 194–200.

J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performances,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1555, 80–88 (1991).

D. J. Elliot, Integrated Circuit Fabrication Technology (McGraw-Hill, New York, 1989).

V. Pol, J. H. Bennewitz, G. C. Escher, M. Feldman, V. A. Firtion, T. E. Jewell, B. E. Willcomb, J. T. Clemons, “Excimer laser based lithography: a deep ultraviolet wafer stepper,” in Optical Microlithography VI, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.633, 6–16 (1986).
[CrossRef]

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

1 × 4 optical distribution system with integrated planar micro-optics.

Fig. 2
Fig. 2

Grating geometry for (a) a beam splitter and (b) a beam deflector with period p, groove depth d, and duty cycle a/p.

Fig. 3
Fig. 3

1 × 2 beam splitter efficiency versus grating period. The grating parameters are d = 0.145 μm, nglass = 1.46, dc = 50%, and nsilver = 0.10 + i5.58. The incidence parameters are λ = 0.85 μm and ϕ = 0′.

Fig. 4
Fig. 4

1 × 2 beam splitter efficiency versus the grating groove depth. The grating parameters are p = 1.0 μm, nglass = 1.46, dc = 50%, and nsilver = 0.10 + i5.58. The incidence parameters are λ = 0.85 μm and ϕ = 0′.

Fig. 5
Fig. 5

1 × 2 beam splitter efficiency versus the grating duty cycle. The grating parameters are p = 1.0 μm, nglass = 1.46, dTE = 0.18 μm, dTM = 0.125 μm, and nsilver = 0.10 + i5.58. The incidence parameters are λ = 0.85 μm and ϕ = 0′.

Fig. 6
Fig. 6

Efficiency contour graph of period versus groove depth for (a) TM- and (b) TE-polarized incident beams. The grating parameters are nglass = 1.46, nsilver = 0.10 + i5.58, and dc = 50%. The incidence parameters are λ = 0.85 μm and ϕ = 0′.

Fig. 7
Fig. 7

Processing steps for fabricating a grating with deep-ultraviolet reduction stepper lithography.

Fig. 8
Fig. 8

Processing steps for fabricating a grating with direct electron-beam write lithography.

Fig. 9
Fig. 9

Processing steps for fabricating a binary and a multilevel grating with optical contact lithography.

Fig. 10
Fig. 10

Experimental results of a transmission-type beam splitter grating that has a period p = 2.0 μm, an etch depth d = 0.8 μm, and a duty cycle of 45%.

Fig. 11
Fig. 11

Scanning electron micrograph of a glass transmission beam splitter grating with p = 1.0 μm and 0.5-μm feature size.

Fig. 12
Fig. 12

Scanning electron micrograph of a glass/silver reflection beam splitter grating with p = 1.0 μm and 0.5-μm feature size.

Fig. 13
Fig. 13

Scanning electron micrograph of a four-level GaAs beam deflector grating with 5.0-μm step widths and 0.20-μm step heights, which is fabricated with the processing sequence shown in Fig. 9.

Fig. 14
Fig. 14

Experimental measurements of the beam reflector grating shown in Fig. 13. The power distribution of the diffracted orders is shown for both TE- and TM-polarized light at wavelengths of 10.6 and 9.23 μm.

Fig. 15
Fig. 15

Scanning electron micrograph of a 1.0-μm-period beam deflector grating fabricated with electron-beam direct-write lithography.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θ m sin θ i = m λ n p ,
η 1 = [ L / π sin ( π / L ) ] 2

Metrics