Abstract

The multifrequency acousto-optic modulator efficiency is limited mainly by the two-tone, third-order intermodulation products. We show here that a suitable anisotropic interaction can greatly reduce this undesirable effect. Numerical computations have been drawn for a paratellurite acousto-optic cell, and it is shown that a reduction of ∼16 dB can be reached, limited by the acoustic nonlinearity intermodulation products. A specific method for experimental validation, based on optical heterodyning on a photodetector, is presented. The experimental results agree well with the theoretical ones.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
    [CrossRef]
  2. G. Elston, “Intermodulation products in acoustooptic signal processing systems,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 391–397.
  3. I. C. Chang, “Multifrequency acoustooptic diffraction in wideband Bragg cells,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 445–449.
  4. D. L. Hecht, G. Petrie, S. Wofford, “Multifrequency acoustooptic diffraction in optically birefringent media,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1979), pp. 46–50.
  5. D. L. Hecht, T. Mannigel, J. Rieden, M. Silver, “Wideband recording using acoustooptics,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 112–116.
  6. M. G. Moharam, L. Young, “Criterion for Bragg and Raman–Nath diffraction regimes,” Appl. Opt. 17, 1757–1759 (1978).
    [CrossRef] [PubMed]
  7. M. G. Gazalet, G. Waxin, J. M. Rouvaen, R. Torguet, E. Bridoux, “Independent acoustooptic modulation of the two wavelengths of a bichromatic light beam,” Appl. Opt. 23, 674–681 (1984).
    [CrossRef] [PubMed]
  8. V. V. Lemanov, K. Yushin, “Nonlinear effects in the propagation of elastic waves in piezoelectric crystals,” Sov. Phys. Solid State 15, 2140–2141 (1974).
  9. Y. Ohmachi, N. Uchida, N. Nuzeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
    [CrossRef]
  10. I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–21 (1976).
    [CrossRef]
  11. T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
    [CrossRef]
  12. M. G. Gazalet, S. Carlier, J. P. Picault, G. Waxin, C. Bruneel, “Multifrequency paratellurite acoustooptic modulators,” Appl. Opt. 24, 4435–4438 (1985).
    [CrossRef] [PubMed]
  13. J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
    [CrossRef]

1985 (1)

1984 (1)

1979 (1)

J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

1978 (1)

1977 (1)

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
[CrossRef]

1976 (1)

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–21 (1976).
[CrossRef]

1975 (1)

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

1974 (1)

V. V. Lemanov, K. Yushin, “Nonlinear effects in the propagation of elastic waves in piezoelectric crystals,” Sov. Phys. Solid State 15, 2140–2141 (1974).

1972 (1)

Y. Ohmachi, N. Uchida, N. Nuzeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

Bridoux, E.

M. G. Gazalet, G. Waxin, J. M. Rouvaen, R. Torguet, E. Bridoux, “Independent acoustooptic modulation of the two wavelengths of a bichromatic light beam,” Appl. Opt. 23, 674–681 (1984).
[CrossRef] [PubMed]

J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Bruneel, C.

Carlier, S.

Chang, I. C.

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–21 (1976).
[CrossRef]

I. C. Chang, “Multifrequency acoustooptic diffraction in wideband Bragg cells,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 445–449.

Elston, G.

G. Elston, “Intermodulation products in acoustooptic signal processing systems,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 391–397.

Fukumoto, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Gazalet, M. G.

Ghazaleh, M.

J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Hecht, D. L.

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
[CrossRef]

D. L. Hecht, G. Petrie, S. Wofford, “Multifrequency acoustooptic diffraction in optically birefringent media,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1979), pp. 46–50.

D. L. Hecht, T. Mannigel, J. Rieden, M. Silver, “Wideband recording using acoustooptics,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 112–116.

Kawabuchi, M.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Lemanov, V. V.

V. V. Lemanov, K. Yushin, “Nonlinear effects in the propagation of elastic waves in piezoelectric crystals,” Sov. Phys. Solid State 15, 2140–2141 (1974).

Mannigel, T.

D. L. Hecht, T. Mannigel, J. Rieden, M. Silver, “Wideband recording using acoustooptics,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 112–116.

Moharam, M. G.

Nuzeki, N.

Y. Ohmachi, N. Uchida, N. Nuzeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, N. Uchida, N. Nuzeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

Petrie, G.

D. L. Hecht, G. Petrie, S. Wofford, “Multifrequency acoustooptic diffraction in optically birefringent media,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1979), pp. 46–50.

Picault, J. P.

Rieden, J.

D. L. Hecht, T. Mannigel, J. Rieden, M. Silver, “Wideband recording using acoustooptics,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 112–116.

Rouvaen, J. M.

M. G. Gazalet, G. Waxin, J. M. Rouvaen, R. Torguet, E. Bridoux, “Independent acoustooptic modulation of the two wavelengths of a bichromatic light beam,” Appl. Opt. 23, 674–681 (1984).
[CrossRef] [PubMed]

J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Silver, M.

D. L. Hecht, T. Mannigel, J. Rieden, M. Silver, “Wideband recording using acoustooptics,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 112–116.

Torguet, R.

M. G. Gazalet, G. Waxin, J. M. Rouvaen, R. Torguet, E. Bridoux, “Independent acoustooptic modulation of the two wavelengths of a bichromatic light beam,” Appl. Opt. 23, 674–681 (1984).
[CrossRef] [PubMed]

J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Uchida, N.

Y. Ohmachi, N. Uchida, N. Nuzeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

Watanabe, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Waxin, G.

Wofford, S.

D. L. Hecht, G. Petrie, S. Wofford, “Multifrequency acoustooptic diffraction in optically birefringent media,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1979), pp. 46–50.

Yano, T.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Young, L.

Yushin, K.

V. V. Lemanov, K. Yushin, “Nonlinear effects in the propagation of elastic waves in piezoelectric crystals,” Sov. Phys. Solid State 15, 2140–2141 (1974).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

IEEE Trans. Sonics Ultrason. (2)

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–21 (1976).
[CrossRef]

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
[CrossRef]

J. Acoust. Soc. Am. (1)

Y. Ohmachi, N. Uchida, N. Nuzeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

J. Appl. Phys. (1)

J. M. Rouvaen, M. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Sov. Phys. Solid State (1)

V. V. Lemanov, K. Yushin, “Nonlinear effects in the propagation of elastic waves in piezoelectric crystals,” Sov. Phys. Solid State 15, 2140–2141 (1974).

Other (4)

G. Elston, “Intermodulation products in acoustooptic signal processing systems,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 391–397.

I. C. Chang, “Multifrequency acoustooptic diffraction in wideband Bragg cells,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 445–449.

D. L. Hecht, G. Petrie, S. Wofford, “Multifrequency acoustooptic diffraction in optically birefringent media,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1979), pp. 46–50.

D. L. Hecht, T. Mannigel, J. Rieden, M. Silver, “Wideband recording using acoustooptics,” in Proceedings of the IEEE Ultrasonics Symposium, B. R. McAvoy, ed. (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 112–116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Acousto-optic intermodulation modes pattern.

Fig. 2
Fig. 2

General behavior of the dynamic range versus the propagation time at constant efficiency.

Fig. 3
Fig. 3

(a) Isotropic Bragg symmetrical interaction wave-vector diagram, (b) Anisotropic interaction wave-vector diagram.

Fig. 4
Fig. 4

Wave-vector diagram for multifrequency anisotropic interaction assuming direct phase mismatch Δϕ d = 0.

Fig. 5
Fig. 5

Dynamic range versus acousto-opotic efficiency. Effect of the inverse basic phase mismatch.Comparison with the acoustic nonlinearities: —, phase-grating intermodulation withΔϕ i = 6π; – ––, phase-grating intermodulation with Δϕ i = 0; ………,acoustic nonlinearities.

Fig. 6
Fig. 6

Threshold value for the inverse phase mismatch versus acousto-optic efficiency.

Fig. 7
Fig. 7

Experimental setup.

Fig. 8
Fig. 8

Dynamic range versus inverse phase mismatch for different acousto-optic efficiencies. Region 1, phase-grating limitations; region 2, acoustic nonlinearities limitations; ○, experimental data.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

η = η 3 / 36 ,
η = C η 3 ,
α = 10 log ( η / η s ) dB ,
Δ ϕ = Δ k W ,
δ f = Δ f / N .
Δ ϕ i = 2 π δ f W θ 0 / υ ,
η η S = | g 1 g ( 1 , 2 , 1 ) | 2 = | g 2 g ( 2 , 1 , 2 ) | 2 .
f 1 = f 0 δ f / 2 ,
f 2 = f 0 + δ f / 2 .
f 3 = 2 f 1 f 2 ± f b ,
f 3 = 2 f 2 f 1 ± f b .
d g 0 / d z = j c 1 g 1 j c 2 g 2 , d g 1 / d z = j c 1 g 0 j c 2 g ( 1 , 2 ) exp ( j Δ ϕ i z ) , d g 2 / d z = j c 2 g 0 j c 1 g ( 2 , 1 ) exp ( j Δ ϕ i z ) , d g ( 1 , 2 ) / d z = j c 2 g 1 exp ( j Δ ϕ i z ) j c 1 g ( 1 , 2 , 1 ) exp ( j Δ ϕ i z ) , d g ( 2 , 1 ) / d z = j c 1 g 2 exp ( j Δ ϕ i z ) j c 2 g ( 2 , 1 , 2 ) exp ( j Δ ϕ i z ) , d g ( 1 , 2 , 1 ) / d z = j c 1 g ( 1 , 2 ) exp ( j Δ ϕ i z ) , d g ( 2 , 1 , 2 ) / d z = j c 2 g ( 2 , 1 ) exp ( j Δ ϕ i z ) ,
c i = π 2 ( P i P 0 ) 1 / 2 ,
P 0 = λ 2 2 M 2 H W ,

Metrics