Abstract

The primary zone of deposition of optical energy is called here the optical zone. The tissue absorption, tissue scattering, laser-beam diameter, or size of pigmented structures can specify the size of the optical zone. The initial optical zone may be altered by the formation of char during high-irradiance laser exposure, and a spectrum of char absorbance is presented. The relationship between the optical zone and the pulse duration specifies the type of laser–tissue interaction that may occur. Short laser pulses can confine thermal energy and/or stress energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, “Simple theory, measurements, and rules of thumb for dosimetry during photodynamic therapy,” in Photo-dynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 100–108 (1989).
  2. S. L. Jacques, “Simple optical theory for light dosimetry during PDT,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1645, 155–165 (1992).
  3. L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissues in standard C,” University of Texas M. D. Anderson Cancer Center, Houston, Tex. 77030 (personal communication, 1992).
  4. R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
    [CrossRef]
  5. S. L. Jacques, “The role of skin optics in diagnostic and therapeutic uses of lasers,” in Lasers in Dermatology, R. Steiner, R. Kaufmann, M. Landthaler, O. Braun-Falco, eds. (Springer-Verlag, Berlin, 1991), Chap. 1, p. 1.
    [CrossRef]
  6. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
    [CrossRef] [PubMed]
  7. S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 2–13 (1991).
  8. L. C. Maillard, C. R. Acad. Sci. (Paris) 154, 66–68 (1912).
  9. R. M. Verdaasdonk, C. Borst, M. J. C. van Gemert, “Onset of continuous wave Nd:YAG and argon laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 179–186 (1990).
  10. C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
    [CrossRef]
  11. I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates,” Ph.D. dissertation (William Marsh Rice University, Houston, Tex., 1992).
  12. S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1989), Vol. 11, Part 4/6, pp. 1199–1200.
  13. S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).
  14. S. L. Jacques, C. Newman, X. He, “Thermal coagulation of tissues: liver studies indicate a distribution of rate parameters not a single rate parameter describes the coagulation process,” in Advances in Biological Heat and Mass Transfer, Proceedings of Annual Winter Meeting (American Society of Mechanical Engineers, Atlanta, Ga., 1991), pp. 71–73.
  15. S. Thomsen, S. Jacques, S. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 2–11 (1990).
  16. R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989).
    [CrossRef] [PubMed]
  17. P. E. Dyer, R. K. Al-Dhahir, “Transient photoacoustic studies of laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 46–60 (1990).
  18. R. S. Dingus, R. J. Scammon, “Grüneisen-stress induced ablation of biological tissue,” in Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1427, 45–54 (1991).
  19. S. L. Jacques, G. Gofstein, R. S. Dingus, “Laser-flash photography of laser-induced spallation and mechanical stress waves,” in Laser–Tissue InteractionS. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1646, 284–294 (1992).
  20. G. Paltauf, E. Reichel, H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed sampling photography,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1646, 343–352 (1992).
  21. D. H. Sliney, “Radiometry and laser safety standards,” Health Phys. 56, 717–724 (1989).
    [CrossRef] [PubMed]
  22. S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
    [CrossRef] [PubMed]
  23. K. W. Gregory, B. O. Berdus, P. C. Grandaw, R. R. Anderson, “Pulsed-laser-induced vasodilation and vasospasm,” presented at the Sixty-Fifth Scientific Session of the American Heart Association, New Orleans, La., 16–19 November 1992.
  24. S. L. Jacques, D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53, 769–776 (1991).
    [PubMed]

1991 (2)

S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).

S. L. Jacques, D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53, 769–776 (1991).
[PubMed]

1990 (1)

C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
[CrossRef]

1989 (3)

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989).
[CrossRef] [PubMed]

D. H. Sliney, “Radiometry and laser safety standards,” Health Phys. 56, 717–724 (1989).
[CrossRef] [PubMed]

1988 (1)

S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
[CrossRef] [PubMed]

1987 (1)

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

1912 (1)

L. C. Maillard, C. R. Acad. Sci. (Paris) 154, 66–68 (1912).

Al-Dhahir, R. K.

P. E. Dyer, R. K. Al-Dhahir, “Transient photoacoustic studies of laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 46–60 (1990).

Anderson, R. R.

R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989).
[CrossRef] [PubMed]

K. W. Gregory, B. O. Berdus, P. C. Grandaw, R. R. Anderson, “Pulsed-laser-induced vasodilation and vasospasm,” presented at the Sixty-Fifth Scientific Session of the American Heart Association, New Orleans, La., 16–19 November 1992.

Beck, H.

Berdus, B. O.

K. W. Gregory, B. O. Berdus, P. C. Grandaw, R. R. Anderson, “Pulsed-laser-induced vasodilation and vasospasm,” presented at the Sixty-Fifth Scientific Session of the American Heart Association, New Orleans, La., 16–19 November 1992.

Birgruber, R.

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

Borst, C.

R. M. Verdaasdonk, C. Borst, M. J. C. van Gemert, “Onset of continuous wave Nd:YAG and argon laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 179–186 (1990).

Bosman, S.

S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).

Bruggemann, U.

Dingus, R. S.

R. S. Dingus, R. J. Scammon, “Grüneisen-stress induced ablation of biological tissue,” in Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1427, 45–54 (1991).

S. L. Jacques, G. Gofstein, R. S. Dingus, “Laser-flash photography of laser-induced spallation and mechanical stress waves,” in Laser–Tissue InteractionS. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1646, 284–294 (1992).

Dyer, P. E.

P. E. Dyer, R. K. Al-Dhahir, “Transient photoacoustic studies of laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 46–60 (1990).

Farinelli, W.

Flock, S.

S. Thomsen, S. Jacques, S. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 2–11 (1990).

Flotte, T. J.

S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
[CrossRef] [PubMed]

Fujimoto, J. G.

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

Gaeeni, M. O.

S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1989), Vol. 11, Part 4/6, pp. 1199–1200.

Gange, R. W.

C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
[CrossRef]

Gawande, A.

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

Gofstein, G.

S. L. Jacques, G. Gofstein, R. S. Dingus, “Laser-flash photography of laser-induced spallation and mechanical stress waves,” in Laser–Tissue InteractionS. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1646, 284–294 (1992).

Grandaw, P. C.

K. W. Gregory, B. O. Berdus, P. C. Grandaw, R. R. Anderson, “Pulsed-laser-induced vasodilation and vasospasm,” presented at the Sixty-Fifth Scientific Session of the American Heart Association, New Orleans, La., 16–19 November 1992.

Gregory, K. W.

K. W. Gregory, B. O. Berdus, P. C. Grandaw, R. R. Anderson, “Pulsed-laser-induced vasodilation and vasospasm,” presented at the Sixty-Fifth Scientific Session of the American Heart Association, New Orleans, La., 16–19 November 1992.

He, X.

S. L. Jacques, C. Newman, X. He, “Thermal coagulation of tissues: liver studies indicate a distribution of rate parameters not a single rate parameter describes the coagulation process,” in Advances in Biological Heat and Mass Transfer, Proceedings of Annual Winter Meeting (American Society of Mechanical Engineers, Atlanta, Ga., 1991), pp. 71–73.

Jacques, S.

S. Thomsen, S. Jacques, S. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 2–11 (1990).

Jacques, S. L.

S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).

S. L. Jacques, D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53, 769–776 (1991).
[PubMed]

C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
[CrossRef]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

R. R. Anderson, H. Beck, U. Bruggemann, W. Farinelli, S. L. Jacques, J. A. Parrish, “Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry,” Appl. Opt. 28, 2256–2262 (1989).
[CrossRef] [PubMed]

S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
[CrossRef] [PubMed]

S. L. Jacques, G. Gofstein, R. S. Dingus, “Laser-flash photography of laser-induced spallation and mechanical stress waves,” in Laser–Tissue InteractionS. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1646, 284–294 (1992).

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 2–13 (1991).

S. L. Jacques, “The role of skin optics in diagnostic and therapeutic uses of lasers,” in Lasers in Dermatology, R. Steiner, R. Kaufmann, M. Landthaler, O. Braun-Falco, eds. (Springer-Verlag, Berlin, 1991), Chap. 1, p. 1.
[CrossRef]

S. L. Jacques, “Simple theory, measurements, and rules of thumb for dosimetry during photodynamic therapy,” in Photo-dynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 100–108 (1989).

S. L. Jacques, “Simple optical theory for light dosimetry during PDT,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1645, 155–165 (1992).

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissues in standard C,” University of Texas M. D. Anderson Cancer Center, Houston, Tex. 77030 (personal communication, 1992).

S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1989), Vol. 11, Part 4/6, pp. 1199–1200.

S. L. Jacques, C. Newman, X. He, “Thermal coagulation of tissues: liver studies indicate a distribution of rate parameters not a single rate parameter describes the coagulation process,” in Advances in Biological Heat and Mass Transfer, Proceedings of Annual Winter Meeting (American Society of Mechanical Engineers, Atlanta, Ga., 1991), pp. 71–73.

Keijzer, M.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 2–13 (1991).

Lin, W.-Z.

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

Maillard, L. C.

L. C. Maillard, C. R. Acad. Sci. (Paris) 154, 66–68 (1912).

McAuliffe, D. J.

S. L. Jacques, D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53, 769–776 (1991).
[PubMed]

S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
[CrossRef] [PubMed]

Newman, C.

S. L. Jacques, C. Newman, X. He, “Thermal coagulation of tissues: liver studies indicate a distribution of rate parameters not a single rate parameter describes the coagulation process,” in Advances in Biological Heat and Mass Transfer, Proceedings of Annual Winter Meeting (American Society of Mechanical Engineers, Atlanta, Ga., 1991), pp. 71–73.

Paltauf, G.

G. Paltauf, E. Reichel, H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed sampling photography,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1646, 343–352 (1992).

Parrish, J. A.

Prahl, S. A.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Puliafito, C. A.

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

Reichel, E.

G. Paltauf, E. Reichel, H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed sampling photography,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1646, 343–352 (1992).

Rosen, C. F.

C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
[CrossRef]

Saidi, I. S.

S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).

I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates,” Ph.D. dissertation (William Marsh Rice University, Houston, Tex., 1992).

Scammon, R. J.

R. S. Dingus, R. J. Scammon, “Grüneisen-stress induced ablation of biological tissue,” in Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1427, 45–54 (1991).

Schmidt-Kloiber, H.

G. Paltauf, E. Reichel, H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed sampling photography,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1646, 343–352 (1992).

Shoenlein, R. W.

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

Sliney, D. H.

D. H. Sliney, “Radiometry and laser safety standards,” Health Phys. 56, 717–724 (1989).
[CrossRef] [PubMed]

Stuart, M. E.

C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
[CrossRef]

Thomsen, S.

S. Thomsen, S. Jacques, S. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 2–11 (1990).

Thomsen, S. L.

S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).

van Gemert, M. J. C.

R. M. Verdaasdonk, C. Borst, M. J. C. van Gemert, “Onset of continuous wave Nd:YAG and argon laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 179–186 (1990).

Verdaasdonk, R. M.

R. M. Verdaasdonk, C. Borst, M. J. C. van Gemert, “Onset of continuous wave Nd:YAG and argon laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 179–186 (1990).

Wang, L.

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissues in standard C,” University of Texas M. D. Anderson Cancer Center, Houston, Tex. 77030 (personal communication, 1992).

Watanabe, S.

S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
[CrossRef] [PubMed]

Welch, A. J.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Appl. Opt. (1)

C. R. Acad. Sci. (Paris) (1)

L. C. Maillard, C. R. Acad. Sci. (Paris) 154, 66–68 (1912).

Health Phys. (1)

D. H. Sliney, “Radiometry and laser safety standards,” Health Phys. 56, 717–724 (1989).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. Birgruber, C. A. Puliafito, A. Gawande, W.-Z. Lin, R. W. Shoenlein, J. G. Fujimoto, “Femtosecond laser–tissue interactions: retinal injury studies,” IEEE J. Quantum Electron. QE-23, 1836–1844 (1987).
[CrossRef]

J. Invest. Dermatol. (1)

S. Watanabe, T. J. Flotte, D. J. McAuliffe, S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90, 761–766 (1988).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Lasers Surg. Med. Suppl. (1)

S. Bosman, S. L. Thomsen, I. S. Saidi, S. L. Jacques, “Optical detection of heat damage in fresh canine myocardium,” Lasers Surg. Med. Suppl. 3, 3 (1991).

Photobiol. Photochem. (1)

C. F. Rosen, S. L. Jacques, M. E. Stuart, R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of the action spectrum,” Photobiol. Photochem. 5, 583–588 (1990).
[CrossRef]

Photochem. Photobiol. (1)

S. L. Jacques, D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53, 769–776 (1991).
[PubMed]

Other (15)

K. W. Gregory, B. O. Berdus, P. C. Grandaw, R. R. Anderson, “Pulsed-laser-induced vasodilation and vasospasm,” presented at the Sixty-Fifth Scientific Session of the American Heart Association, New Orleans, La., 16–19 November 1992.

I. S. Saidi, “Transcutaneous optical measurement of hyperbilirubinemia in neonates,” Ph.D. dissertation (William Marsh Rice University, Houston, Tex., 1992).

S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1989), Vol. 11, Part 4/6, pp. 1199–1200.

S. L. Jacques, C. Newman, X. He, “Thermal coagulation of tissues: liver studies indicate a distribution of rate parameters not a single rate parameter describes the coagulation process,” in Advances in Biological Heat and Mass Transfer, Proceedings of Annual Winter Meeting (American Society of Mechanical Engineers, Atlanta, Ga., 1991), pp. 71–73.

S. Thomsen, S. Jacques, S. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 2–11 (1990).

P. E. Dyer, R. K. Al-Dhahir, “Transient photoacoustic studies of laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 46–60 (1990).

R. S. Dingus, R. J. Scammon, “Grüneisen-stress induced ablation of biological tissue,” in Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1427, 45–54 (1991).

S. L. Jacques, G. Gofstein, R. S. Dingus, “Laser-flash photography of laser-induced spallation and mechanical stress waves,” in Laser–Tissue InteractionS. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1646, 284–294 (1992).

G. Paltauf, E. Reichel, H. Schmidt-Kloiber, “Study of different ablation models by use of high-speed sampling photography,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1646, 343–352 (1992).

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 2–13 (1991).

R. M. Verdaasdonk, C. Borst, M. J. C. van Gemert, “Onset of continuous wave Nd:YAG and argon laser tissue ablation,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 179–186 (1990).

S. L. Jacques, “The role of skin optics in diagnostic and therapeutic uses of lasers,” in Lasers in Dermatology, R. Steiner, R. Kaufmann, M. Landthaler, O. Braun-Falco, eds. (Springer-Verlag, Berlin, 1991), Chap. 1, p. 1.
[CrossRef]

S. L. Jacques, “Simple theory, measurements, and rules of thumb for dosimetry during photodynamic therapy,” in Photo-dynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 100–108 (1989).

S. L. Jacques, “Simple optical theory for light dosimetry during PDT,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1645, 155–165 (1992).

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multilayered tissues in standard C,” University of Texas M. D. Anderson Cancer Center, Houston, Tex. 77030 (personal communication, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Light distributions in clear and turbid media. The fluence rate ψ is plotted as a function of depth z. Two cases are shown: (1) a clear medium μa = 0.3 cm−1) and (2) a scattering medium μa = 0.3 cm−1, μs = 40 cm−1, g = 0.9), which are approximately the optical properties of rat leg muscle at 633 nm. In the clear medium ψ attenuates as ψ0 exp(−μaz) [see Eq. (1)]. In the scattering medium ψ approximately attenuates as ψ0k exp(−z/δ) (dashed curve), where k accounts for backscattered light that augments the surface fluence rate [Eq. (4)] and δ is the optical penetration depth of diffusion theory [Eq. (5)]. In the clear medium the optical zone is 1/μa or 3.3 cm [Eq. (2)]. In the scattering medium the optical zone is δ[1 + ln(k)] or 1.3 cm [δ = 5.1 mm, Eq. (5)].

Fig. 2
Fig. 2

Effect of laser beamwidth w on the size of the optical zone. A, Isofluence rate contours for ψ(r, z) equal to ψ0/e or 0.37ψ0 are plotted for a series of beam diameters. The coordinates r and z are normalized by the optical penetration depth δ so that they yield dimensionless coordinates, r/δ and z/δ. The beam-widths are normalized so that they yield values w/δ that equal 1, 2.5, 5, 10, and 20. For broad beams, the maximum depth reached by the contour equals δ[1 + ln(k)]. B, the maximum depth along the central axis, z/δ at r = 0, and the maximum width of the optical zone at the surface, r/δ at z = 0, is plotted as a function of the beam diameter. For small beams, w/δ < 2.5, the width of the optical zone is limited by the beam size: r/δ = 0.66(w/δ). For broad beams, w/δ > 2.5, the depth of the optical zone is limited by one-dimensional propagation: z/δ = [1 + ln(k)][1 − exp(−w/2.25δ)] (based on Monte Carlo simulations using μa = 1 cm−1, μs = 100 cm−1, g = 0.9).

Fig. 3
Fig. 3

Irradiation of a pigmented structure: a buried blood vessel. Monte Carlo simulations of energy deposition, J/cm3, by a pulsed 577-nm laser as a function of depth following a 1-J/cm2 radiant exposure. A, heating a small 20-μm vessel. The optical zone of energy deposition equals the size of the vessel. B, heating a large 200-μm vessel. The light does not penetrate into the vessel because of the strong absorption by blood (1/μa equals 31 μm at a 577-nm wavelength). The optical zone is better defined by the 1/e depth (31 μm) than by the size of the vessel. The hottest regions occur between 200 and 231 μm (and 369 and 400 μm). (The following tissue optical properties were used in the model: skin, μa = 2.8 cm−1, μs = 215 cm−1, g = 0.8; whole blood, μa = 324 cm−1, μs = 500 cm−1, g = 0.98. The laser delivered a 1-J/cm2 uniform beam with a 4-mm diameter.)

Fig. 4
Fig. 4

Absorbance spectrum of char. An optical-fiber spectrophotometer measured the reflected light from in vitro chicken breast at two sites. Both sites had been coagulated with a Nd:YAG laser (30 s, 90 W, a 7-mm-diameter spot, or ∼230 W/cm2), but one site had exceeded the sudden threshold for char formation, which yielded a surface layer of char. The other site had not yet achieved char. The change in optical density ODchar caused by the char layer is plotted versus wavelength. The dashed curve extrapolates the measured visible spectrum into the near IR.

Fig. 5
Fig. 5

Spatial confinement of thermal and stress energy for various lasers. The graph maps the optical zone d versus laser-pulse duration tp for a variety of lasers under investigation or in use for medical applications. The solid lines indicate the criteria for thermal confinement (tp < d2/κ) and stress confinement (tp < d/υs). A short laser pulse can deposit thermal energy in the optical zone faster than thermal diffusion can dissipate that energy. A very short laser pulse can induce a stress field in the optical zone faster than the stress can propagate out of the optical zone at the speed of sound. Confinement maximizes the thermal and stress effects of the laser on the tissue.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( z ) = Ψ 0 exp ( μ a z ) ,
d = 1 μ a .
Ψ ( z ) = Ψ 0 k exp ( z / δ ) for z > δ ,
k = 3 + 5.1 R d exp ( 9.7 R d ) .
δ = 1 { 3 μ a [ μ a + μ s ( 1 g ) ] } 1 / 2 .
d = δ [ 1 + ln ( k ) ] .
d w if narrow beam ( w < 1 / μ a ) ,
d 1 / μ a if broad beam ( w > 1 / μ a ) .
d 0.66 w if narrow beam , w 2.5 δ ,
d δ [ 1 + ln ( k ) ] [ 1 exp ( w / 2.25 δ ) ] if broad beam , w > 2.5 δ .
ratio = SDf R d with char SDf R d no char = R d with char R d no char
OD char = log 10 ( R d with char R d without char ) .
ψ ( 0 ) = ψ 0 ( 1 + 6 R d ) .
τ diffusion = ( 2 d ) 2 4 κ = d 2 κ .
t p < d 2 κ .
t p < d υ s .
stress confinement factor = A = 1 exp ( t p υ s / d ) t p υ s / d .

Metrics