Abstract

A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a comprehensive set of references see J. K. Hagge, “State-of-the-art multichip modules for avionics,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 29–42 (1992).
    [CrossRef]
  2. S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
    [CrossRef]
  3. R. T. Chen, “Optical interconnects: a solution to very high speed integrated circuits and systems,” in Integrated Optics and Optoelectronics II, K. Wong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1374, 162–175 (1991);L. A. Hornak, S. K. Tewksbury, “On the feasibility of through-wafer optical interconnects for hybrid-wafer-scale-integrated architecture,” IEEE Trans. Electron Dev. ED-34, 1557–1563 (1987).
    [CrossRef]
  4. R. J. Jensen, J. P. Cummings, H. Vora, “Copper/polyimide material system for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 7, 384–393 (1984);K. K. Chakravorty, C. P. Chien, J. M. Cech, M. H. Tanielian, P. L. Young, “High-density interconnection using photosensitive polyimide and electroplated copper conductor lines,” IEEE Trans. Compon., Hybrids Manuf. Technol. 13, 200–206 (1990).
    [CrossRef]
  5. R. Reuter, H. Franke, C. Feger, “Evaluating polyimide as lightguiding materials,” Appl. Opt. 27, 4565–4571 (1988).
    [CrossRef] [PubMed]
  6. H. Franke, J. D. Crow, “Optical waveguiding in polyimide,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 102–107 (1986).
  7. H. Franke, G. Knabke, R. Reuter, “Optical waveguiding in polyimide II,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.682, 191–195 (1987).
  8. H. Franke, W. Heuer, “Photo-induced self-condensation, a technique for fabricating organic lightguide structures,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 120–125 (1986).
  9. C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng.994, 92–100 (1988).
  10. K. K. Chakravorty, C. P. Chien, “Waveguiding characteristics in polyimide films with different chemistry of formation,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 559–567 (1990);C. P. Chien, K. K. Chakravorty, “Dependence of precursor chemistry and curing conditions on optical loss characteristics of polyimide waveguides,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 338–346 (1990).
    [CrossRef]
  11. E. A. Chandross, W. J. Tomlinson, G. D. Aumiller, “Latent-imaging photopolymer systems,” Appl. Opt. 17, 566–573 (1978).
    [CrossRef] [PubMed]
  12. H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984).
    [CrossRef] [PubMed]
  13. W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).
  14. K. K. Chakravorty, J. M. Cech, M. H. Tanielian, “Hybrid wafer scale integration technology based on photosensitive polyimide,” in Advances in Polyimide Science and Technology, C. Feger, ed. (Technomic, Lancaster, Pa., 1993).
  15. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980).
    [CrossRef] [PubMed]
  16. A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
    [CrossRef]
  17. A. Himeno, H. Terui, M. Kobayashi, “Loss measurement and analysis of high-silica reflection bending optical waveguides,” IEEE J. Lightwave Technol. 6, 41–46 (1988).
    [CrossRef]
  18. P. L. Egerton, E. Pitts, A. Reiser, “Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites,” Macromolecules 14, 95–100 (1981).
    [CrossRef]
  19. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 116.
  20. W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry, J. E. Pitts, G. S. Hammond, K. Gollnick, eds. (Wiley, New York, 1980), Vol. 12, pp.201–276.
    [CrossRef]

1992 (2)

For a comprehensive set of references see J. K. Hagge, “State-of-the-art multichip modules for avionics,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 29–42 (1992).
[CrossRef]

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

1988 (3)

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

A. Himeno, H. Terui, M. Kobayashi, “Loss measurement and analysis of high-silica reflection bending optical waveguides,” IEEE J. Lightwave Technol. 6, 41–46 (1988).
[CrossRef]

R. Reuter, H. Franke, C. Feger, “Evaluating polyimide as lightguiding materials,” Appl. Opt. 27, 4565–4571 (1988).
[CrossRef] [PubMed]

1984 (2)

R. J. Jensen, J. P. Cummings, H. Vora, “Copper/polyimide material system for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 7, 384–393 (1984);K. K. Chakravorty, C. P. Chien, J. M. Cech, M. H. Tanielian, P. L. Young, “High-density interconnection using photosensitive polyimide and electroplated copper conductor lines,” IEEE Trans. Compon., Hybrids Manuf. Technol. 13, 200–206 (1990).
[CrossRef]

H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984).
[CrossRef] [PubMed]

1981 (1)

P. L. Egerton, E. Pitts, A. Reiser, “Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites,” Macromolecules 14, 95–100 (1981).
[CrossRef]

1980 (1)

1978 (1)

Aumiller, G. D.

Beranek, M.

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

Cech, J. M.

K. K. Chakravorty, J. M. Cech, M. H. Tanielian, “Hybrid wafer scale integration technology based on photosensitive polyimide,” in Advances in Polyimide Science and Technology, C. Feger, ed. (Technomic, Lancaster, Pa., 1993).

Chakravorty, K. K.

K. K. Chakravorty, J. M. Cech, M. H. Tanielian, “Hybrid wafer scale integration technology based on photosensitive polyimide,” in Advances in Polyimide Science and Technology, C. Feger, ed. (Technomic, Lancaster, Pa., 1993).

K. K. Chakravorty, C. P. Chien, “Waveguiding characteristics in polyimide films with different chemistry of formation,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 559–567 (1990);C. P. Chien, K. K. Chakravorty, “Dependence of precursor chemistry and curing conditions on optical loss characteristics of polyimide waveguides,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 338–346 (1990).
[CrossRef]

Chandross, E. A.

E. A. Chandross, W. J. Tomlinson, G. D. Aumiller, “Latent-imaging photopolymer systems,” Appl. Opt. 17, 566–573 (1978).
[CrossRef] [PubMed]

W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry, J. E. Pitts, G. S. Hammond, K. Gollnick, eds. (Wiley, New York, 1980), Vol. 12, pp.201–276.
[CrossRef]

Chen, R. T.

R. T. Chen, “Optical interconnects: a solution to very high speed integrated circuits and systems,” in Integrated Optics and Optoelectronics II, K. Wong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1374, 162–175 (1991);L. A. Hornak, S. K. Tewksbury, “On the feasibility of through-wafer optical interconnects for hybrid-wafer-scale-integrated architecture,” IEEE Trans. Electron Dev. ED-34, 1557–1563 (1987).
[CrossRef]

Chien, C. P.

K. K. Chakravorty, C. P. Chien, “Waveguiding characteristics in polyimide films with different chemistry of formation,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 559–567 (1990);C. P. Chien, K. K. Chakravorty, “Dependence of precursor chemistry and curing conditions on optical loss characteristics of polyimide waveguides,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 338–346 (1990).
[CrossRef]

Crow, J. D.

H. Franke, J. D. Crow, “Optical waveguiding in polyimide,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 102–107 (1986).

Cummings, J. P.

R. J. Jensen, J. P. Cummings, H. Vora, “Copper/polyimide material system for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 7, 384–393 (1984);K. K. Chakravorty, C. P. Chien, J. M. Cech, M. H. Tanielian, P. L. Young, “High-density interconnection using photosensitive polyimide and electroplated copper conductor lines,” IEEE Trans. Compon., Hybrids Manuf. Technol. 13, 200–206 (1990).
[CrossRef]

Eachus, R.

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

Egerton, P. L.

P. L. Egerton, E. Pitts, A. Reiser, “Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites,” Macromolecules 14, 95–100 (1981).
[CrossRef]

Feger, C.

Franke, H.

R. Reuter, H. Franke, C. Feger, “Evaluating polyimide as lightguiding materials,” Appl. Opt. 27, 4565–4571 (1988).
[CrossRef] [PubMed]

H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984).
[CrossRef] [PubMed]

H. Franke, G. Knabke, R. Reuter, “Optical waveguiding in polyimide II,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.682, 191–195 (1987).

H. Franke, J. D. Crow, “Optical waveguiding in polyimide,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 102–107 (1986).

H. Franke, W. Heuer, “Photo-induced self-condensation, a technique for fabricating organic lightguide structures,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 120–125 (1986).

Hagge, J. K.

For a comprehensive set of references see J. K. Hagge, “State-of-the-art multichip modules for avionics,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 29–42 (1992).
[CrossRef]

Heuer, W.

H. Franke, W. Heuer, “Photo-induced self-condensation, a technique for fabricating organic lightguide structures,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 120–125 (1986).

Himeno, A.

A. Himeno, H. Terui, M. Kobayashi, “Loss measurement and analysis of high-silica reflection bending optical waveguides,” IEEE J. Lightwave Technol. 6, 41–46 (1988).
[CrossRef]

Hwang, L.-T.

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 116.

Jensen, R. J.

R. J. Jensen, J. P. Cummings, H. Vora, “Copper/polyimide material system for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 7, 384–393 (1984);K. K. Chakravorty, C. P. Chien, J. M. Cech, M. H. Tanielian, P. L. Young, “High-density interconnection using photosensitive polyimide and electroplated copper conductor lines,” IEEE Trans. Compon., Hybrids Manuf. Technol. 13, 200–206 (1990).
[CrossRef]

Katayama, Y.

Knabke, G.

H. Franke, G. Knabke, R. Reuter, “Optical waveguiding in polyimide II,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.682, 191–195 (1987).

Kobayashi, M.

A. Himeno, H. Terui, M. Kobayashi, “Loss measurement and analysis of high-silica reflection bending optical waveguides,” IEEE J. Lightwave Technol. 6, 41–46 (1988).
[CrossRef]

Krug, W.

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

Kurokawa, T.

Lin, A. A.

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

Markelo, H.

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

McCredie, B. D.

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

Miao, E.

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

Pitts, E.

P. L. Egerton, E. Pitts, A. Reiser, “Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites,” Macromolecules 14, 95–100 (1981).
[CrossRef]

Reiser, A.

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

P. L. Egerton, E. Pitts, A. Reiser, “Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites,” Macromolecules 14, 95–100 (1981).
[CrossRef]

Reuter, R.

R. Reuter, H. Franke, C. Feger, “Evaluating polyimide as lightguiding materials,” Appl. Opt. 27, 4565–4571 (1988).
[CrossRef] [PubMed]

H. Franke, G. Knabke, R. Reuter, “Optical waveguiding in polyimide II,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.682, 191–195 (1987).

Rochford, K.

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

Sastri, V. R.

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

Schacham, S. E.

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

Stegeman, G.

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

Sullivan, C. T.

C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng.994, 92–100 (1988).

Takato, N.

Tanielian, M. H.

K. K. Chakravorty, J. M. Cech, M. H. Tanielian, “Hybrid wafer scale integration technology based on photosensitive polyimide,” in Advances in Polyimide Science and Technology, C. Feger, ed. (Technomic, Lancaster, Pa., 1993).

Terui, H.

A. Himeno, H. Terui, M. Kobayashi, “Loss measurement and analysis of high-silica reflection bending optical waveguides,” IEEE J. Lightwave Technol. 6, 41–46 (1988).
[CrossRef]

Tesoro, G.

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

Tomlinson, W. J.

E. A. Chandross, W. J. Tomlinson, G. D. Aumiller, “Latent-imaging photopolymer systems,” Appl. Opt. 17, 566–573 (1978).
[CrossRef] [PubMed]

W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry, J. E. Pitts, G. S. Hammond, K. Gollnick, eds. (Wiley, New York, 1980), Vol. 12, pp.201–276.
[CrossRef]

Turlik, I.

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

Veatech, M. S.

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

Vora, H.

R. J. Jensen, J. P. Cummings, H. Vora, “Copper/polyimide material system for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 7, 384–393 (1984);K. K. Chakravorty, C. P. Chien, J. M. Cech, M. H. Tanielian, P. L. Young, “High-density interconnection using photosensitive polyimide and electroplated copper conductor lines,” IEEE Trans. Compon., Hybrids Manuf. Technol. 13, 200–206 (1990).
[CrossRef]

Zanoni, R.

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

Appl. Opt. (4)

IEEE J. Lightwave Technol. (1)

A. Himeno, H. Terui, M. Kobayashi, “Loss measurement and analysis of high-silica reflection bending optical waveguides,” IEEE J. Lightwave Technol. 6, 41–46 (1988).
[CrossRef]

IEEE Trans. Compon., Hybrids Manuf. Technol. (3)

R. J. Jensen, J. P. Cummings, H. Vora, “Copper/polyimide material system for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 7, 384–393 (1984);K. K. Chakravorty, C. P. Chien, J. M. Cech, M. H. Tanielian, P. L. Young, “High-density interconnection using photosensitive polyimide and electroplated copper conductor lines,” IEEE Trans. Compon., Hybrids Manuf. Technol. 13, 200–206 (1990).
[CrossRef]

For a comprehensive set of references see J. K. Hagge, “State-of-the-art multichip modules for avionics,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 29–42 (1992).
[CrossRef]

S. E. Schacham, H. Markelo, L.-T. Hwang, B. D. McCredie, M. S. Veatech, I. Turlik, “Comparative evaluation of optical waveguides as alternative interconnections for high performance packaging,” IEEE Trans. Compon., Hybrids Manuf. Technol. 15, 63–72 (1992).
[CrossRef]

Macromolecules (2)

A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, “On the cross-linking mechanism of benzophenone-containing polyimides,” Macromolecules 21, 1165–1169 (1988);J. C. Scaiano, J. C. Netto-Ferreira, A. F. Becknell, R. D. Small, “The mechanism of photocure of photosensitive polyimides,” Polym. Eng. Sci. 29, 942–944 (1989).
[CrossRef]

P. L. Egerton, E. Pitts, A. Reiser, “Photocycloaddition in solid poly(vinyl cinnamate). The photoreactive polymer matrix as an ensemble of chromophore sites,” Macromolecules 14, 95–100 (1981).
[CrossRef]

Other (10)

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 116.

W. J. Tomlinson, E. A. Chandross, “Organic photochemical refractive-index image recording systems,” in Advances in Photochemistry, J. E. Pitts, G. S. Hammond, K. Gollnick, eds. (Wiley, New York, 1980), Vol. 12, pp.201–276.
[CrossRef]

W. Krug, E. Miao, M. Beranek, K. Rochford, R. Zanoni, G. Stegeman, “Optical properties of strip-loaded polydiacetylene waveguides,” in Nonlinear Optical Materials and Devices for Photonic Switching, N. Peygambarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1216, 226–239 (1990).

K. K. Chakravorty, J. M. Cech, M. H. Tanielian, “Hybrid wafer scale integration technology based on photosensitive polyimide,” in Advances in Polyimide Science and Technology, C. Feger, ed. (Technomic, Lancaster, Pa., 1993).

H. Franke, J. D. Crow, “Optical waveguiding in polyimide,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 102–107 (1986).

H. Franke, G. Knabke, R. Reuter, “Optical waveguiding in polyimide II,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. Soc. Photo-Opt. Instrum. Eng.682, 191–195 (1987).

H. Franke, W. Heuer, “Photo-induced self-condensation, a technique for fabricating organic lightguide structures,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651, 120–125 (1986).

C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng.994, 92–100 (1988).

K. K. Chakravorty, C. P. Chien, “Waveguiding characteristics in polyimide films with different chemistry of formation,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 559–567 (1990);C. P. Chien, K. K. Chakravorty, “Dependence of precursor chemistry and curing conditions on optical loss characteristics of polyimide waveguides,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 338–346 (1990).
[CrossRef]

R. T. Chen, “Optical interconnects: a solution to very high speed integrated circuits and systems,” in Integrated Optics and Optoelectronics II, K. Wong, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1374, 162–175 (1991);L. A. Hornak, S. K. Tewksbury, “On the feasibility of through-wafer optical interconnects for hybrid-wafer-scale-integrated architecture,” IEEE Trans. Electron Dev. ED-34, 1557–1563 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic representation of the photolocking process.

Fig. 2
Fig. 2

IR spectra of the BTDA-alkylated diamine preimidized polyimide film baked at 100 °C for 60 min. The peaks at 1783 cm−1 (indicated by the arrow) and 1370 cm−1 are associated with the imide ring.

Fig. 3
Fig. 3

Absorption changes in photosensitizer solution in 4-butyrolactone as a function of UV dose: (a) benzildimethylketal dopant, (b) benzoin ethyl ether dopant.

Fig. 4
Fig. 4

IR spectra of benzildimethylketal-doped polyimide samples. (a) Samples baked at two different (indicated) temperatures. The doped polyimide samples were not exposed to UV radiation. At 45 °C the samples were baked for 4 h; at 150 °C the samples were baked for 60 min. (b) IR spectra of doped polyimide samples (dried at 45 °C for 4 h) before and after the UV exposure step. The exposure dose was 2.4 J/cm2.

Fig. 5
Fig. 5

Refractive index n(TE) as a function of doping concentration Cd (%). Cd is the dopant concentration in the starting polyimide solution and is defined as Cd = (weight of dopant)/(weight of polyimide solution + weight of dopant). The samples were baked at 150 °C for 60 min: (a) benzildimethylketal, (b) benzoin ethyl ether dopant.

Fig. 6
Fig. 6

Refractive-index value n(TE) for the benzoin ethyl ether-doped region baked at 150 °C for various lengths of time. The Cd values are also indicated.

Fig. 7
Fig. 7

IR spectra of Probimide film baked at 100 °C for 60 min before and after UV exposure. The UV exposure dose was 4.8 J/cm2 measured at 365 nm. The decrease in peak intensity at 1725 nm is believed to be associated with the carbonyl group of the benzophenone moiety that is reduced during the cross-linking reaction.

Fig. 8
Fig. 8

Increase in refractive index Δn of polyimide film baked at 200 °C as a function of UV dose measured at 365 nm. The sample was baked for 45 min.

Fig. 9
Fig. 9

Changes in the refractive indices between the photolocked and undoped polyimide regions as a function of Cd after UV flood exposure at a dose of 10 J/cm2. The films were baked at 200 °C for 30 min before flood exposure step.

Fig. 10
Fig. 10

Thickness variation between the photolocked and the undoped polyimide channel areas for benzoin ethyl ether dopant. Id and I0 correspond to the thickness of the doped and undoped regions, respectively.

Fig. 11
Fig. 11

Scattering losses of doped (photolocked) planar waveguides as a function of doping concentration. See text for details.

Fig. 12
Fig. 12

(a) Optical micrograph (400× magnification) of a heavily doped (Cd = 30%) polyimide region showing precipitation of benzildimethylketal. (b) Micrograph of a lightly doped region (Cd = 15%) that does not undergo any precipitation. The UV exposure dose that corresponds to the photolocking step was 3.6 J/cm2. The final bake temperature was 200 °C as in Fig. 11. A dose of 10 J/cm2 was used in the final flood UV exposure step.

Fig. 13
Fig. 13

Optical micrograph of embedded channel waveguides fabricated in the polyimide film by the procedure detailed in the text.

Fig. 14
Fig. 14

Output image from a 10-μm-wide embedded channel waveguide. The film thickness was 2.0 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( n 2 1 ) / ( n 2 + 2 ) = 4 / 3 Π P .
n = [ ( n 2 + 2 ) * ( n 2 1 ) Δ ρ ] / 6 n ρ .

Metrics