Abstract

A novel double-layer fiber winding that suppresses efficiently the nonreciprocity caused in Sagnac interferometers by temperature fields with radial temperature variations was proposed and analyzed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Shupe, “Thermally induced nonreciprocity in the fiberoptic interferometers,” Appl. Opt. 19, 654–655 (1980).
    [Crossref] [PubMed]
  2. N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” in Fiber Optic and Laser Sensors, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.412, 268–271 (1983).
  3. M. S. Bielas, L. F. Stokes, C. T. Herdman, “Test results of a high performance fiber-optic rotation sensor,” in Fiber Optic Gyros: 10th Aniversary Conference, E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.719, 81–86 (1986).
  4. R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” IEEE J. Lightwave Technol. 7, 262–269 (1989).
    [Crossref]

1989 (1)

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” IEEE J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

1980 (1)

Bielas, M. S.

M. S. Bielas, L. F. Stokes, C. T. Herdman, “Test results of a high performance fiber-optic rotation sensor,” in Fiber Optic Gyros: 10th Aniversary Conference, E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.719, 81–86 (1986).

Burns, W. K.

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” IEEE J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

Frigo, N. J.

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” IEEE J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” in Fiber Optic and Laser Sensors, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.412, 268–271 (1983).

Herdman, C. T.

M. S. Bielas, L. F. Stokes, C. T. Herdman, “Test results of a high performance fiber-optic rotation sensor,” in Fiber Optic Gyros: 10th Aniversary Conference, E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.719, 81–86 (1986).

Moeller, R. P.

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” IEEE J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

Shupe, D. M.

Stokes, L. F.

M. S. Bielas, L. F. Stokes, C. T. Herdman, “Test results of a high performance fiber-optic rotation sensor,” in Fiber Optic Gyros: 10th Aniversary Conference, E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.719, 81–86 (1986).

Appl. Opt. (1)

IEEE J. Lightwave Technol. (1)

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” IEEE J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

Other (2)

N. J. Frigo, “Compensation of linear sources of non-reciprocity in Sagnac interferometers,” in Fiber Optic and Laser Sensors, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.412, 268–271 (1983).

M. S. Bielas, L. F. Stokes, C. T. Herdman, “Test results of a high performance fiber-optic rotation sensor,” in Fiber Optic Gyros: 10th Aniversary Conference, E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.719, 81–86 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the examined fiber winding with the first and one other double layer. The + and − signs denote the opposite directions of the winding fiber.

Fig. 2
Fig. 2

Fiber parts of the examined double layer with four axial sections.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T i = T oi + a i ( t t o ) i = 1 , 2 ,
d f i ( x ) d x = k i x , i = 1 , 2 ,
d g i ( y ) d y = k i y , i = 1 , 2 ,
k i = 2 π n oi a i ( α + β i ) λ υ i ,
F = k 1 A + k 2 B ,
G = k 1 B + k 2 A ,
A = o s z d z + 3 s 4 s z d z + r + s r + 3 x z d z ,
B = s 3 s z d z + r r + s z d z + r + 3 s r + 4 s z d z ,
φ ( t o + τ 1 ) = F G .
φ ( t o + τ 1 ) = 0

Metrics