Abstract

The strain and temperature sensitivities of three common commercial high-birefringent polarization-maintaining fibers (bow-tie, polarization-maintaining and absorption-reducing, and elliptical core fibers) have been measured by using a dynamic polarimetric method. The experimental setup and measuring process are described in detail. Where possible, the measuring data are compared with published data, and good agreement is obtained.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” IEEE J. Lightwave Technol. LT-4, 1071–1089 (1986).
    [CrossRef]
  2. R. H. Stolen, W. Pleibel, J. R. Simpson, “High-birefringence optical fibers by preform deformation,” IEEE J. Lightwave Technol. LT-2, 639–641 (1984).
    [CrossRef]
  3. S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE J. Quantum Electron. QE-18, 1515–1523 (1982).
    [CrossRef]
  4. M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
    [CrossRef]
  5. A. Papp, H. Harms, “Polarization optics of index-gradient optical waveguide fibers,” Appl. Opt. 14, 2406–2411 (1975).
    [CrossRef] [PubMed]
  6. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (North-Holland, Amsterdam, 1977).
  7. A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” IEEE J. Lightwave Technol. LT-3135–145 (1985).
    [CrossRef]
  8. A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
    [CrossRef]
  9. M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
    [CrossRef]
  10. P. A. Leilabady, J. D. C. Jones, D. A. Jackson, “Monomode fiber-optic strain gauge with simultaneous phase- and polarization-state detection,” Opt. Lett. 10, 576–578 (1985).
    [CrossRef] [PubMed]
  11. W. D. Hogg, R. D. Turner, R. M. Measures, “Polarimetric fiber optic structural strain sensor characterisation,” in Fiber Optic Smart Structures and Skins II,E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1170, 542–550 (1989).
  12. S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979), Chap. 12.
  13. V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity (Graylock, Rochester, N.Y., 1953).
  14. A. Bertholds, R. Dandliker, “Deformation of single-mode optical fibers under static longitudinal stress,” IEEE J. Lightwave Technol. LT-5, 895–900 (1987).
    [CrossRef]
  15. J. D. C. Jones, D. A. Jackson, “Research advances in fiber optic interferometric and polarimetric sensors,” Laser Focus142–146 (October1985).
  16. P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
    [CrossRef]
  17. S. R. Waite, R. P. Tatam, A. Jackson, “Use of optical fibers for damage and strain detection in composite materials,” Composites 19, 435–442 (1988).
    [CrossRef]
  18. A. D. Kersey, M. A. Davis, M. J. Marrone, “Differential polarimetric fiber-optic sensor configuration with dual wavelength operation,” Appl. Opt. 28, 204–206 (1989).
    [CrossRef] [PubMed]

1989 (1)

1988 (1)

S. R. Waite, R. P. Tatam, A. Jackson, “Use of optical fibers for damage and strain detection in composite materials,” Composites 19, 435–442 (1988).
[CrossRef]

1987 (1)

A. Bertholds, R. Dandliker, “Deformation of single-mode optical fibers under static longitudinal stress,” IEEE J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

1986 (2)

P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
[CrossRef]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” IEEE J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

1985 (3)

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” IEEE J. Lightwave Technol. LT-3135–145 (1985).
[CrossRef]

J. D. C. Jones, D. A. Jackson, “Research advances in fiber optic interferometric and polarimetric sensors,” Laser Focus142–146 (October1985).

P. A. Leilabady, J. D. C. Jones, D. A. Jackson, “Monomode fiber-optic strain gauge with simultaneous phase- and polarization-state detection,” Opt. Lett. 10, 576–578 (1985).
[CrossRef] [PubMed]

1984 (2)

M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
[CrossRef]

R. H. Stolen, W. Pleibel, J. R. Simpson, “High-birefringence optical fibers by preform deformation,” IEEE J. Lightwave Technol. LT-2, 639–641 (1984).
[CrossRef]

1983 (2)

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
[CrossRef]

1982 (1)

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE J. Quantum Electron. QE-18, 1515–1523 (1982).
[CrossRef]

1975 (1)

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (North-Holland, Amsterdam, 1977).

Barlow, A. J.

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” IEEE J. Lightwave Technol. LT-3135–145 (1985).
[CrossRef]

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (North-Holland, Amsterdam, 1977).

Bertholds, A.

A. Bertholds, R. Dandliker, “Deformation of single-mode optical fibers under static longitudinal stress,” IEEE J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

Birch, R. D.

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

Chynoweth, A. G.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979), Chap. 12.

Corke, M.

P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
[CrossRef]

M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
[CrossRef]

Dandliker, R.

A. Bertholds, R. Dandliker, “Deformation of single-mode optical fibers under static longitudinal stress,” IEEE J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

Davis, M. A.

Harms, H.

Hogg, W. D.

W. D. Hogg, R. D. Turner, R. M. Measures, “Polarimetric fiber optic structural strain sensor characterisation,” in Fiber Optic Smart Structures and Skins II,E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1170, 542–550 (1989).

Jackson, A.

S. R. Waite, R. P. Tatam, A. Jackson, “Use of optical fibers for damage and strain detection in composite materials,” Composites 19, 435–442 (1988).
[CrossRef]

Jackson, D. A.

P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
[CrossRef]

P. A. Leilabady, J. D. C. Jones, D. A. Jackson, “Monomode fiber-optic strain gauge with simultaneous phase- and polarization-state detection,” Opt. Lett. 10, 576–578 (1985).
[CrossRef] [PubMed]

J. D. C. Jones, D. A. Jackson, “Research advances in fiber optic interferometric and polarimetric sensors,” Laser Focus142–146 (October1985).

M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
[CrossRef]

Jones, J. D. C.

P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
[CrossRef]

J. D. C. Jones, D. A. Jackson, “Research advances in fiber optic interferometric and polarimetric sensors,” Laser Focus142–146 (October1985).

P. A. Leilabady, J. D. C. Jones, D. A. Jackson, “Monomode fiber-optic strain gauge with simultaneous phase- and polarization-state detection,” Opt. Lett. 10, 576–578 (1985).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, M. J. Marrone, “Differential polarimetric fiber-optic sensor configuration with dual wavelength operation,” Appl. Opt. 28, 204–206 (1989).
[CrossRef] [PubMed]

M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
[CrossRef]

Leilabady, P. A.

P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
[CrossRef]

P. A. Leilabady, J. D. C. Jones, D. A. Jackson, “Monomode fiber-optic strain gauge with simultaneous phase- and polarization-state detection,” Opt. Lett. 10, 576–578 (1985).
[CrossRef] [PubMed]

Liu, K.

M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
[CrossRef]

Marrone, M. J.

A. D. Kersey, M. A. Davis, M. J. Marrone, “Differential polarimetric fiber-optic sensor configuration with dual wavelength operation,” Appl. Opt. 28, 204–206 (1989).
[CrossRef] [PubMed]

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE J. Quantum Electron. QE-18, 1515–1523 (1982).
[CrossRef]

Measures, R. M.

W. D. Hogg, R. D. Turner, R. M. Measures, “Polarimetric fiber optic structural strain sensor characterisation,” in Fiber Optic Smart Structures and Skins II,E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1170, 542–550 (1989).

Miller, S. E.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979), Chap. 12.

Noda, J.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” IEEE J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Novozhilov, V. V.

V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity (Graylock, Rochester, N.Y., 1953).

Okamoto, K.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” IEEE J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
[CrossRef]

Ourmazd, A.

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

Papp, A.

Payne, D. N.

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
[CrossRef]

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

Pleibel, W.

R. H. Stolen, W. Pleibel, J. R. Simpson, “High-birefringence optical fibers by preform deformation,” IEEE J. Lightwave Technol. LT-2, 639–641 (1984).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE J. Quantum Electron. QE-18, 1515–1523 (1982).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” IEEE J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Simpson, J. R.

R. H. Stolen, W. Pleibel, J. R. Simpson, “High-birefringence optical fibers by preform deformation,” IEEE J. Lightwave Technol. LT-2, 639–641 (1984).
[CrossRef]

Stolen, R. H.

R. H. Stolen, W. Pleibel, J. R. Simpson, “High-birefringence optical fibers by preform deformation,” IEEE J. Lightwave Technol. LT-2, 639–641 (1984).
[CrossRef]

Tarbox, E. J.

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

Tatam, R. P.

S. R. Waite, R. P. Tatam, A. Jackson, “Use of optical fibers for damage and strain detection in composite materials,” Composites 19, 435–442 (1988).
[CrossRef]

Turner, R. D.

W. D. Hogg, R. D. Turner, R. M. Measures, “Polarimetric fiber optic structural strain sensor characterisation,” in Fiber Optic Smart Structures and Skins II,E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1170, 542–550 (1989).

Varnham, M. P.

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
[CrossRef]

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

Waite, S. R.

S. R. Waite, R. P. Tatam, A. Jackson, “Use of optical fibers for damage and strain detection in composite materials,” Composites 19, 435–442 (1988).
[CrossRef]

Appl. Opt. (2)

Composites (1)

S. R. Waite, R. P. Tatam, A. Jackson, “Use of optical fibers for damage and strain detection in composite materials,” Composites 19, 435–442 (1988).
[CrossRef]

Electron. Lett. (3)

M. Corke, A. D. Kersey, K. Liu, D. A. Jackson, “Remote temperature sensing using polarization preserving fiber,” Electron. Lett. 20, 67–69 (1984).
[CrossRef]

A. Ourmazd, R. D. Birch, M. P. Varnham, D. N. Payne, E. J. Tarbox, “Enhancement of birefringence in polarisation-maintaining fiber by thermal annealing,” Electron. Lett. 19, 143–144 (1983).
[CrossRef]

M. P. Varnham, A. J. Barlow, D. N. Payne, K. Okamoto, “Polarimetric strain gauges using high birefringence fiber,” Electron. Lett. 19, 699–670 (1983).
[CrossRef]

IEEE J. Lightwave Technol. (4)

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” IEEE J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

R. H. Stolen, W. Pleibel, J. R. Simpson, “High-birefringence optical fibers by preform deformation,” IEEE J. Lightwave Technol. LT-2, 639–641 (1984).
[CrossRef]

A. J. Barlow, “Optical-fiber birefringence measurement using a photo-elastic modulator,” IEEE J. Lightwave Technol. LT-3135–145 (1985).
[CrossRef]

A. Bertholds, R. Dandliker, “Deformation of single-mode optical fibers under static longitudinal stress,” IEEE J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE J. Quantum Electron. QE-18, 1515–1523 (1982).
[CrossRef]

J. Phys. E (1)

P. A. Leilabady, J. D. C. Jones, M. Corke, D. A. Jackson, “A dual interferometer implemented in parallel on a single birefringent monomode optical fiber,” J. Phys. E 19, 143–146 (1986).
[CrossRef]

Laser Focus (1)

J. D. C. Jones, D. A. Jackson, “Research advances in fiber optic interferometric and polarimetric sensors,” Laser Focus142–146 (October1985).

Opt. Lett. (1)

Other (4)

W. D. Hogg, R. D. Turner, R. M. Measures, “Polarimetric fiber optic structural strain sensor characterisation,” in Fiber Optic Smart Structures and Skins II,E. Udd, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1170, 542–550 (1989).

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979), Chap. 12.

V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity (Graylock, Rochester, N.Y., 1953).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (North-Holland, Amsterdam, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of dynamic polarimetry: PM fiber, polarization-maintaining fiber; PEM, photoelastic modulator.

Fig. 2
Fig. 2

Experimental setup for strain sensitivity measurement of PM fibers: QWP, quarter-wave plate; P, polarizer; A, analyzer; PEM, photoelastic modulator; MO, microscope objective (20×); OSC, oscilloscope.

Fig. 3
Fig. 3

Structures of three tested PM fibers.

Fig. 4
Fig. 4

Electrical output signals (observed on an oscilloscope) that change periodically between frequencies of 2f and 1f while the test fiber is pulled: (a) phase retardation δϕ of fiber is 0 (frequency 2f), (b) 0 < δϕ < π/4, (c) π/4 < δϕ < π/2, (d) δϕ = π/2 (frequency 1f). Here only a half-period is given.

Fig. 5
Fig. 5

Strain sensitivity measurement for bow-tie fiber: *, phase shift that is due to fiber elongation; −, intensity of first harmonics; +, intensity of second harmonics.

Fig. 6
Fig. 6

Strain sensitivity measurement for PANDA fiber: *, phase shift that is due to fiber elongation; −, intensity of first harmonics; +, intensity of second harmonics.

Fig. 7
Fig. 7

Strain sensitivity measurement for elliptical fiber: *, phase shift that is due to fiber elongation; −, intensity of first harmonics; +, intensity of second harmonics.

Fig. 8
Fig. 8

Phase shift as a function of elongation for bow-tie, PANDA, and elliptical core fibers.

Fig. 9
Fig. 9

Experimental setup for temperature sensitivity measurement of PM fibers. The abbreviations are the same as those defined in the caption to Fig. 2.

Fig. 10
Fig. 10

Phase shift as a function of temperature for bow-tie, PANDA, and elliptical core fibers.

Tables (3)

Tables Icon

Table 1 Parameters of Three Tested PM Fibers

Tables Icon

Table 2 Comparison of Strain Sensitivity (Δϕ/ΔL) Measurements for York Bow-Tie Fiber

Tables Icon

Table 3 Comparison of Temperature Sensitivity (Δϕ/LΔT) Measurements for York Bow-Tie Fiber

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E = 1 2 ( i + j ) .
δ ϕ = δ β L ,
s = s 0 cos ( ω t ) ,
E = 1 / 2 { i exp [ ( δ ϕ + s ) / 2 ] + j exp [ ( δ ϕ + s ) / 2 ] } .
E = 1 / 2 ( i j ) E = ½ { exp [ i ( δ ϕ + s ) / 2 ] exp [ i ( δ ϕ + s ) / 2 ] } = i sin [ δ ϕ + s ) / 2 ] .
I = | E | 2 = sin 2 [ δ ϕ + s ) / 2 ] = ½ [ 1 cos ( δ ϕ ) cos ( s ) + sin ( δ ϕ ) sin ( s ) ] .
I = ½ [ 1 J 0 ( s 0 ) cos ( δ ϕ ) ] + J 1 ( s 0 ) sin ( δ ϕ ) cos ω t + J 2 ( s 0 ) cos ( δ ϕ ) cos 2 ω t .
I 1 = J 1 ( s 0 ) sin ( δ ϕ ) , I 2 = J 2 ( s 0 ) cos ( δ ϕ ) ,
tan ( δ ϕ ) = J 2 ( s 0 ) I 1 J 1 ( s 0 ) I 2 = 0.4394 I 1 I 2 I 1 I 2 .

Metrics