Abstract

We develop a retrieval scheme by using advanced very-high-resolution radiometer (AVHRR) 3.7- and 10.9-μm data to compute simultaneously the temperature, optical depth, and mean effective ice-crystal size for cirrus clouds. The methodology involves the numerical solution of a set of nonlinear algebraic equations derived from the theory of radiative transfer. The solution requires the correlation of emissivities of two channels in terms of the effective extinction ratio. The dependence of this ratio on ice-crystal size distribution is examined by using an adding-doubling radiative transfer program. Investigation of the effects of cirrus parameters on upwelling radiances reveals that the brightness-temperature difference between the two channels becomes larger for colder cirrus and smaller ice-crystal sizes. We apply the current retrieval scheme to satellite data collected at 0930 UTC, 28 October 1986, over the region of the First International Satellite Cloud Climatology Project Regional Experiment Cirrus Intensive Field Observation. We select the data over an area (~44° N, 92° W) near Fort McCoy, Wisconsin, for analysis. The retrieved cirrus heights compare reasonably well with lidar measurements taken at Fort McCoy 2 h after a satellite overpass at the target region. The retrieved mean effective crystal size is close to that derived from in situ aircraft measurements over Madison, Wisconsin, six hours after a satellite overpass.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  2. K. N. Liou, “Remote sensing of the thickness and composition of cirrus clouds from satellites,” J. Appl. Meteorol. 16, 91–99 (1977).
    [CrossRef]
  3. G. Szejwach, “Determination of semi-transparent cirrus cloud temperature from infrared radiances: application to METEO-SAT,” J. Appl. Meteorol. 21, 384–393 (1982).
    [CrossRef]
  4. W. Pollinger, P. Wendling, “A bispectral method for the height determination of optically thin ice clouds,” Contrib. Atmos. Phys. 57, 269–281 (1984).
  5. R. Huang, K. N. Liou, “Remote sounding of cirrus optical depth and temperature from 3.7 and 11 micrometer windows,” Adv. Atmos. Sci. 1, 150–164 (1984).
    [CrossRef]
  6. A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 23, 322–333 (1985).
  7. K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
    [CrossRef]
  8. S. A. Ackerman, W. L. Smith, “Inferring cloud microphysical properties from high resolution spectral measurements in the 8-13 μm window region,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 6–8.
  9. S. Kinne, T. Ackerman, A. Heymsfield, K. Miller, “Radiative transfer in cirrus clouds from airborne flux and microphysical measurements during FIRE 86,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 9–15.
  10. T. Inoue, “On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region,” J. Meteorol. Soc. Jpn. 63, 88–98 (1985).
  11. M. L. Wu, “A method for remote sensing the emissivity, fractional cloud cover and cloud top temperature of high level, thin clouds,” J. Clim. Appl. Meteorol. 26, 225–233 (1987).
    [CrossRef]
  12. R. P. d’Entremont, M. K. Griffin, J. T. Bunting, “Retrieval of cirrus radiative properties and altitudes using multichannel infrared data,” in Preprint of the AMS Fifth Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1990), pp. 4–9.
  13. R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
    [CrossRef]
  14. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [CrossRef]
  15. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  16. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
    [CrossRef]
  17. K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
    [CrossRef] [PubMed]
  18. K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modelling (Oxford U. Press, Oxford, 1992).
  19. A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).
    [CrossRef]
  20. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).
  21. A. Dudhia, “Noise characteristics of the AVHRR infrared channels,” Int. J. Remote Sensing 10, 637–644 (1989).
    [CrossRef]
  22. K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
    [CrossRef]
  23. D. O’C. Starr, D. P. Wylie, “The 27–28 October 1986 FIRE cirrus case study: meteorology and clouds,” Mon. Weather Rev. 118, 2259–2287 (1990).
    [CrossRef]
  24. A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
    [CrossRef]

1990 (6)

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
[CrossRef]

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

D. O’C. Starr, D. P. Wylie, “The 27–28 October 1986 FIRE cirrus case study: meteorology and clouds,” Mon. Weather Rev. 118, 2259–2287 (1990).
[CrossRef]

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

1989 (3)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

A. Dudhia, “Noise characteristics of the AVHRR infrared channels,” Int. J. Remote Sensing 10, 637–644 (1989).
[CrossRef]

1987 (1)

M. L. Wu, “A method for remote sensing the emissivity, fractional cloud cover and cloud top temperature of high level, thin clouds,” J. Clim. Appl. Meteorol. 26, 225–233 (1987).
[CrossRef]

1986 (1)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

1985 (2)

T. Inoue, “On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region,” J. Meteorol. Soc. Jpn. 63, 88–98 (1985).

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 23, 322–333 (1985).

1984 (3)

W. Pollinger, P. Wendling, “A bispectral method for the height determination of optically thin ice clouds,” Contrib. Atmos. Phys. 57, 269–281 (1984).

R. Huang, K. N. Liou, “Remote sounding of cirrus optical depth and temperature from 3.7 and 11 micrometer windows,” Adv. Atmos. Sci. 1, 150–164 (1984).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

1982 (1)

G. Szejwach, “Determination of semi-transparent cirrus cloud temperature from infrared radiances: application to METEO-SAT,” J. Appl. Meteorol. 21, 384–393 (1982).
[CrossRef]

1977 (1)

K. N. Liou, “Remote sensing of the thickness and composition of cirrus clouds from satellites,” J. Appl. Meteorol. 16, 91–99 (1977).
[CrossRef]

1970 (1)

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).
[CrossRef]

Ackerman, S. A.

S. A. Ackerman, W. L. Smith, “Inferring cloud microphysical properties from high resolution spectral measurements in the 8-13 μm window region,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 6–8.

Ackerman, T.

S. Kinne, T. Ackerman, A. Heymsfield, K. Miller, “Radiative transfer in cirrus clouds from airborne flux and microphysical measurements during FIRE 86,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 9–15.

Ackerman, T. P.

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

Alvarez, J. M.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

Arking, A.

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 23, 322–333 (1985).

Auer, A. H.

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).
[CrossRef]

Banks, S.

R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
[CrossRef]

Bunting, J. T.

R. P. d’Entremont, M. K. Griffin, J. T. Bunting, “Retrieval of cirrus radiative properties and altitudes using multichannel infrared data,” in Preprint of the AMS Fifth Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1990), pp. 4–9.

Childs, J. D.

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 23, 322–333 (1985).

d’Entremont, R. P.

R. P. d’Entremont, M. K. Griffin, J. T. Bunting, “Retrieval of cirrus radiative properties and altitudes using multichannel infrared data,” in Preprint of the AMS Fifth Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1990), pp. 4–9.

Dudhia, A.

A. Dudhia, “Noise characteristics of the AVHRR infrared channels,” Int. J. Remote Sensing 10, 637–644 (1989).
[CrossRef]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).

Griffin, M. K.

R. P. d’Entremont, M. K. Griffin, J. T. Bunting, “Retrieval of cirrus radiative properties and altitudes using multichannel infrared data,” in Preprint of the AMS Fifth Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1990), pp. 4–9.

Grund, C. J.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

Hardesty, M. M.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

Heymsfield, A.

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

S. Kinne, T. Ackerman, A. Heymsfield, K. Miller, “Radiative transfer in cirrus clouds from airborne flux and microphysical measurements during FIRE 86,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 9–15.

Heymsfield, A. J.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Huang, R.

R. Huang, K. N. Liou, “Remote sounding of cirrus optical depth and temperature from 3.7 and 11 micrometer windows,” Adv. Atmos. Sci. 1, 150–164 (1984).
[CrossRef]

Inoue, T.

T. Inoue, “On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region,” J. Meteorol. Soc. Jpn. 63, 88–98 (1985).

Kinne, S.

S. Kinne, T. Ackerman, A. Heymsfield, K. Miller, “Radiative transfer in cirrus clouds from airborne flux and microphysical measurements during FIRE 86,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 9–15.

Kreiss, W.

Liou, K. N.

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

R. Huang, K. N. Liou, “Remote sounding of cirrus optical depth and temperature from 3.7 and 11 micrometer windows,” Adv. Atmos. Sci. 1, 150–164 (1984).
[CrossRef]

K. N. Liou, “Remote sensing of the thickness and composition of cirrus clouds from satellites,” J. Appl. Meteorol. 16, 91–99 (1977).
[CrossRef]

K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modelling (Oxford U. Press, Oxford, 1992).

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).

Miller, K.

S. Kinne, T. Ackerman, A. Heymsfield, K. Miller, “Radiative transfer in cirrus clouds from airborne flux and microphysical measurements during FIRE 86,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 9–15.

Miller, K. M.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

Ou, S. C.

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

Platt, C. M. R.

R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Pollinger, W.

W. Pollinger, P. Wendling, “A bispectral method for the height determination of optically thin ice clouds,” Contrib. Atmos. Phys. 57, 269–281 (1984).

Sassen, K.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).

Smith, W. L.

S. A. Ackerman, W. L. Smith, “Inferring cloud microphysical properties from high resolution spectral measurements in the 8-13 μm window region,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 6–8.

Spinhirne, J. D.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

Starr, D. O’C.

D. O’C. Starr, D. P. Wylie, “The 27–28 October 1986 FIRE cirrus case study: meteorology and clouds,” Mon. Weather Rev. 118, 2259–2287 (1990).
[CrossRef]

Stephens, G. L.

R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
[CrossRef]

Stone, R. S.

R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
[CrossRef]

Szejwach, G.

G. Szejwach, “Determination of semi-transparent cirrus cloud temperature from infrared radiances: application to METEO-SAT,” J. Appl. Meteorol. 21, 384–393 (1982).
[CrossRef]

Takano, Y.

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Valero, F. P. J.

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

Veal, D. L.

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).
[CrossRef]

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).

Wendling, P.

W. Pollinger, P. Wendling, “A bispectral method for the height determination of optically thin ice clouds,” Contrib. Atmos. Phys. 57, 269–281 (1984).

Wu, M. L.

M. L. Wu, “A method for remote sensing the emissivity, fractional cloud cover and cloud top temperature of high level, thin clouds,” J. Clim. Appl. Meteorol. 26, 225–233 (1987).
[CrossRef]

Wylie, D. P.

D. O’C. Starr, D. P. Wylie, “The 27–28 October 1986 FIRE cirrus case study: meteorology and clouds,” Mon. Weather Rev. 118, 2259–2287 (1990).
[CrossRef]

Adv. Atmos. Sci. (1)

R. Huang, K. N. Liou, “Remote sounding of cirrus optical depth and temperature from 3.7 and 11 micrometer windows,” Adv. Atmos. Sci. 1, 150–164 (1984).
[CrossRef]

Appl. Opt. (1)

Contrib. Atmos. Phys. (1)

W. Pollinger, P. Wendling, “A bispectral method for the height determination of optically thin ice clouds,” Contrib. Atmos. Phys. 57, 269–281 (1984).

Int. J. Remote Sensing (1)

A. Dudhia, “Noise characteristics of the AVHRR infrared channels,” Int. J. Remote Sensing 10, 637–644 (1989).
[CrossRef]

J. Appl. Meteorol. (4)

K. N. Liou, “Remote sensing of the thickness and composition of cirrus clouds from satellites,” J. Appl. Meteorol. 16, 91–99 (1977).
[CrossRef]

G. Szejwach, “Determination of semi-transparent cirrus cloud temperature from infrared radiances: application to METEO-SAT,” J. Appl. Meteorol. 21, 384–393 (1982).
[CrossRef]

K. N. Liou, S. C. Ou, Y. Takano, F. P. J. Valero, T. P. Ackerman, “Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 μm radiometers during STEP,” J. Appl. Meteorol. 29, 716–726 (1990).
[CrossRef]

R. S. Stone, G. L. Stephens, C. M. R. Platt, S. Banks, “The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory,” J. Appl. Meteorol. 29, 353–366 (1990).
[CrossRef]

J. Atmos. Sci. (4)

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).
[CrossRef]

J. Clim. Appl. Meteorol. (2)

M. L. Wu, “A method for remote sensing the emissivity, fractional cloud cover and cloud top temperature of high level, thin clouds,” J. Clim. Appl. Meteorol. 26, 225–233 (1987).
[CrossRef]

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 23, 322–333 (1985).

J. Meteorol. Soc. Jpn. (1)

T. Inoue, “On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region,” J. Meteorol. Soc. Jpn. 63, 88–98 (1985).

Mon. Weather Rev. (4)

K. Sassen, C. J. Grund, J. D. Spinhirne, M. M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Weather Rev. 118, 2288–2311 (1990).
[CrossRef]

D. O’C. Starr, D. P. Wylie, “The 27–28 October 1986 FIRE cirrus case study: meteorology and clouds,” Mon. Weather Rev. 118, 2259–2287 (1990).
[CrossRef]

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Other (5)

S. A. Ackerman, W. L. Smith, “Inferring cloud microphysical properties from high resolution spectral measurements in the 8-13 μm window region,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 6–8.

S. Kinne, T. Ackerman, A. Heymsfield, K. Miller, “Radiative transfer in cirrus clouds from airborne flux and microphysical measurements during FIRE 86,” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 9–15.

R. P. d’Entremont, M. K. Griffin, J. T. Bunting, “Retrieval of cirrus radiative properties and altitudes using multichannel infrared data,” in Preprint of the AMS Fifth Conference on Satellite Meteorology and Oceanography (American Meteorological Society, Boston, Mass., 1990), pp. 4–9.

K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modelling (Oxford U. Press, Oxford, 1992).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties in the atmosphere,” Environmental Research Paper No. 354, AFCRL-71-0279, AD726116, (U.S. Government Printing Office, Washington, D.C., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Effective extinction ratio k4/k3 as a function of the mean effective size De. Points are based on a number of measured ice-crystal size distributions and the curve is the best quadratic fit.

Fig. 2
Fig. 2

Constant BTD lines for BTD = 0, 2, 5, 10, and 20 K in the domain of Ch. 3 and Ch. 4 radiances.

Fig. 3
Fig. 3

Distributions of the computed Ch. 3 and Ch. 4 radiances that are based on expressions (1) along with the Planck intensity curve. The clear radiances are obtained from the midlatitude summer profile. Cloud bases are set at 7, 9, and 11 km. The ratio k4/k3 is fixed at a value of 1.07.

Fig. 4
Fig. 4

Distributions of the computed Ch. 3 and Ch. 4 radiances that are based on Eq. (6) for three values of k4/k3. The cloud height is 9 km. Also shown is the Planck intensity curve.

Fig. 5
Fig. 5

schematic description of the iterative procedures for the simultaneous solution of cloud temperature, cloud emissivities, and mean effective size.

Fig. 6
Fig. 6

Halftone displays of the brightness temperature map for (a) Ch. 3, and (b) Ch. 4, and (c) the associated BTD map over the FIRE-IFO region.

Fig. 7
Fig. 7

Three-dimensional display of the frequency of occurrence of the radiance pair R3, R4 based on the AVHRR data used in this work.

Fig. 8
Fig. 8

Two-dimensional display of AVHRR Ch. 3 and Ch. 4 radiances for data points that have been identified as cirrus. The cross symbol denotes the mean clear radiances determined from satellite data. Superimposed on these data points are the theoretical curves for k4/k3 = 1.8, 1.4, and 1.1, according to Eq. (5).

Fig. 9
Fig. 9

Contour displays of (a) the retrieved cloud temperature, (b) the mean effective size, and (c) the optical depth.

Tables (2)

Tables Icon

Table 1 Values of k4 and k3 as Functions of the Visible Optical Depth τ

Tables Icon

Table 2 Mean Values of the Retrieved Parameters for Cirrus Pixels within a 1° × 1° Scene West of Fort McCoy at 0930 UTC, 28 October 1986

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R 3 R a 3 ( 1 3 ) + 3 B 3 ( T c ) ,
R 4 R a 4 ( 1 4 ) + 4 B 4 ( T c ) ,
B 3 ( T c ) = n = 0 3 a n [ B 4 ( T c ) ] n = f ( B 4 ) .
3 = 1 exp ( k 3 τ ) ,
4 = 1 exp ( k 4 τ ) .
( 1 3 ) 1 / k 3 = ( 1 4 ) 1 / k 4 .
[ R 3 B 3 ( T c ) R a 3 B 3 ( T c ) ] 1 / k 3 = [ R 4 B 4 ( T c ) R a 4 B 4 ( T c ) ] 1 / k 4 .
R 4 B 4 ( T c ) R a 4 B 4 ( T c ) { R 3 f [ B 4 ( T c ) ] R a 3 f [ B 4 ( T c ) ] } k 4 / k 3 = 0 .
D e = D · L D n ( L ) d L / L D n ( L ) d L ,
k 4 / k 3 = n = 0 2 b n D e n ,
n ( L ) = { A 1 L b 1 ( IWC ) , L L 0 A 2 L b 2 ( IWC ) , L > L 0 ,
D e = n = 0 3 c n ( T c 273 ) n ,

Metrics