Abstract

Experimental results on real-time holographic interferometry using photorefractive iron-doped lithium niobate crystals to store the reference holograms are presented. Since the crystals are self-developing, precise repositioning of the reference hologram or in situ wet processing is not needed. With proper choice of experimental parameters it is found that the same reference hologram can be used for real-time processing of long sequences (~ 10 min.) of input data with minimal degradation. The results obtained on visualization of heat-flow patterns from electronic chips illustrate the utility of this approach.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, 1984).
  2. A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
  3. J. P. Huignard, J. P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electro-optic configuration,” Appl. Opt. 16, 1807–1809 (1977).
    [CrossRef] [PubMed]
  4. Y. H. Ja, “Real-time double-exposure holographic interferometry in four-wave mixing with photorefractive Bi12GeO20 crystals,” Appl. Opt. 21, 3230–3231 (1982).
    [CrossRef] [PubMed]
  5. C. C. Guest, M. M. Mirsalehi, T. K. Gaylord, “exclusive or processing (binary image subtraction) using thick Fourier holograms,” Appl. Opt. 23, 3444–3454 (1984).
    [CrossRef] [PubMed]
  6. R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
    [CrossRef]
  7. A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
    [CrossRef] [PubMed]
  8. R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
    [CrossRef]

1990 (1)

R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
[CrossRef]

1989 (1)

1987 (1)

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
[CrossRef]

1984 (1)

1982 (1)

1978 (1)

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).

1977 (1)

Bagby, J. S.

R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
[CrossRef]

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[CrossRef] [PubMed]

Black, T. D.

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[CrossRef] [PubMed]

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
[CrossRef]

Gaylord, T. K.

Glass, A. M.

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).

Guest, C. C.

Hafiz, A.

R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
[CrossRef]

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[CrossRef] [PubMed]

Haji-Sheikh, A.

R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, 1984).

Herriau, J. P.

Huignard, J. P.

Ja, Y. H.

Magnusson, R.

R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
[CrossRef]

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[CrossRef] [PubMed]

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
[CrossRef]

Mirsalehi, M. M.

Mitchell, J. H.

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
[CrossRef]

Wilson, D. R.

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[CrossRef] [PubMed]

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic interferometry using iron-doped lithium niobate,” Appl. Phys. Lett. 51, 81–82 (1987).
[CrossRef]

J. Electron. Packag. (1)

R. Magnusson, A. Hafiz, J. S. Bagby, A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packag. 112, 225–259 (1990).
[CrossRef]

Opt. Eng. (1)

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).

Other (1)

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge U. Press, Cambridge, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement for real-time interferometry with photorefractive crystals.

Fig. 2
Fig. 2

Interferogram of a heat-flow pattern after application of voltage to the center chip. The temperature of the chip is 53 °C.

Fig. 3
Fig. 3

Same as Fig. 2 but the temperature of the chip is 96 °C.

Fig. 4
Fig. 4

Same as Fig. 2 but the temperature of the chip is 121 °C.

Fig. 5
Fig. 5

Same as Fig. 2 but the temperature of the chip is 176 °C.

Fig. 6
Fig. 6

Interferogram of a heat-flow pattern disturbed by an airflow from the left. The temperature on the center chip is 158 °C. The air flow rate is 2.9 L/min.

Fig. 7
Fig. 7

Interferogram of a heat-flow pattern after application of voltage to all three chips. The temperatures of the chips, from left to right, are 141, 174, and 165 °C, respectively.

Fig. 8
Fig. 8

Reconstructed image of the original reference hologram recorded in the photorefractive crystal with no voltage applied to the three chips. It shows that, after the processing, the reference hologram is not significantly affected.

Metrics