Abstract

The normal component of thin-film thermal conductivity has been measured for the first time, to the best of our knowledge, for several advanced sputtered optical materials. Included are data for single layers of boron nitride, silicon aluminum nitride, silicon aluminum oxynitride, silicon carbide, and for dielectric-enhanced metal reflectors of the form Al(SiO2/Si3N4)n and Al(Al2O3/AlN)n. Sputtered films of more conventional materials such as SiO2, Al2O3, Ta2O5, Ti, and Si have also been measured. The data show that thin-film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film–substrate interface contribution is presented.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription