Abstract

Bright colors have been observed when a metal island film is deposited on top of a silver mirror with a separating quartz layer. For spacer layer thicknesses that are varied from 0 to 140 nm, the visual appearance changes from blue/black to a series of brilliant spectrumlike colors. The sequence is repeated similarly for higher interlayer thicknesses. The phenomenon is analyzed in terms of a stratified medium theory by using TEM data and an electromagnetic model for the optical constants of the metal island film. For island films with a sufficiently high absorbance (> 0.35), the spectra are characterized by two sharp minima where the reflectivity drops to values below 10−3. The observed thickness dependence is analyzed in terms of a complex combination of the phase shifts caused by the island film, the spacer, and the relevant interfaces.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), Chap. 8, p. 8–32.
  2. J. C. Maxwell-Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904); “Colours in metal glasses, in metallic films and in metallic solutions,” Philos. Trans. R. Soc. London Ser. A 205, 237–288 (1906); R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys. 37, 2775–2781 (1966).
    [CrossRef]
  3. J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal systems: I. Theory,” Phys. Rev. B 4, 271–280 (1971).
    [CrossRef]
  4. R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
    [CrossRef]
  5. A. Wokaun, “Surface enhanced electromagnetic processes,” in Solid State Physics, H. Ehrenrein, D. Turnbull, eds. (Academic, San Diego, Calif., 1983), Vol. 38, pp. 223–294.
    [CrossRef]
  6. A. Otto, “Surface enhanced Raman scattering: ‘classical’ and ‘chemical’ origins,” in Light Scattering in Solids, M. Cardona, G. Güntherodt, eds., Vol. 54 of Springer Series Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 289–418.
  7. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  8. W. R. Holland, D. G. Hall, “Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27, 7765–7768 (1983).
    [CrossRef]
  9. W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
    [CrossRef]
  10. R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.
    [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), Chap. 1.6, p. 62.
  12. E. David, “Deutung der Anomalien der optischen Konstanten dünner Metallschichten,” Z. Phys. 144, 389–406 (1939).
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worth, London, 1955), Chap. 5, p. 139.
  14. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  15. H.-J. Hagemann, W. Goudat, C. Kunz, “Optical constants from the far infrared to the x ray: Mg, Al, Cu, Ag, Au, Bi, C and Al2O3,” J. Opt. Soc. Am. 65, 742–744 (1975).
    [CrossRef]
  16. H. Schopper, “Die Untersuchung dünner absorbierender Schichten mit Hilfe der absoluten Phase,” Z. Phys. 130, 565–584 (1951).
    [CrossRef]
  17. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.3, p. 145.
  18. C. G. Granqvist, R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys. 47, 2200–2219 (1976).
    [CrossRef]
  19. R. R. Singer, “Optische Eigenschaften diskontinuierlicher metallischer Filme,” Ph.D. dissertation (Graz University, Graz, Austria, 1991).

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1984 (1)

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

1983 (1)

W. R. Holland, D. G. Hall, “Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27, 7765–7768 (1983).
[CrossRef]

1976 (1)

C. G. Granqvist, R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys. 47, 2200–2219 (1976).
[CrossRef]

1975 (1)

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1971 (1)

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal systems: I. Theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

1951 (1)

H. Schopper, “Die Untersuchung dünner absorbierender Schichten mit Hilfe der absoluten Phase,” Z. Phys. 130, 565–584 (1951).
[CrossRef]

1939 (1)

E. David, “Deutung der Anomalien der optischen Konstanten dünner Metallschichten,” Z. Phys. 144, 389–406 (1939).

1904 (1)

J. C. Maxwell-Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904); “Colours in metal glasses, in metallic films and in metallic solutions,” Philos. Trans. R. Soc. London Ser. A 205, 237–288 (1906); R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys. 37, 2775–2781 (1966).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.3, p. 145.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), Chap. 1.6, p. 62.

Buhrman, R. A.

C. G. Granqvist, R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys. 47, 2200–2219 (1976).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

David, E.

E. David, “Deutung der Anomalien der optischen Konstanten dünner Metallschichten,” Z. Phys. 144, 389–406 (1939).

Glang, R.

L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), Chap. 8, p. 8–32.

Goudat, W.

Granqvist, C. G.

C. G. Granqvist, R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys. 47, 2200–2219 (1976).
[CrossRef]

Hagemann, H.-J.

Hall, D. G.

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

W. R. Holland, D. G. Hall, “Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27, 7765–7768 (1983).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worth, London, 1955), Chap. 5, p. 139.

Holland, W. R.

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

W. R. Holland, D. G. Hall, “Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27, 7765–7768 (1983).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.3, p. 145.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kunz, C.

Lemon, J. R.

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal systems: I. Theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

Maissel, L. I.

L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), Chap. 8, p. 8–32.

Marton, J. P.

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal systems: I. Theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904); “Colours in metal glasses, in metallic films and in metallic solutions,” Philos. Trans. R. Soc. London Ser. A 205, 237–288 (1906); R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys. 37, 2775–2781 (1966).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Otto, A.

A. Otto, “Surface enhanced Raman scattering: ‘classical’ and ‘chemical’ origins,” in Light Scattering in Solids, M. Cardona, G. Güntherodt, eds., Vol. 54 of Springer Series Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 289–418.

Prock, A.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.
[CrossRef]

Schopper, H.

H. Schopper, “Die Untersuchung dünner absorbierender Schichten mit Hilfe der absoluten Phase,” Z. Phys. 130, 565–584 (1951).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.
[CrossRef]

Singer, R. R.

R. R. Singer, “Optische Eigenschaften diskontinuierlicher metallischer Filme,” Ph.D. dissertation (Graz University, Graz, Austria, 1991).

Wokaun, A.

A. Wokaun, “Surface enhanced electromagnetic processes,” in Solid State Physics, H. Ehrenrein, D. Turnbull, eds. (Academic, San Diego, Calif., 1983), Vol. 38, pp. 223–294.
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), Chap. 1.6, p. 62.

J. Appl. Phys. (1)

C. G. Granqvist, R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys. 47, 2200–2219 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Philos. Trans. R. Soc. London Ser. A (1)

J. C. Maxwell-Garnett, “Colors in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904); “Colours in metal glasses, in metallic films and in metallic solutions,” Philos. Trans. R. Soc. London Ser. A 205, 237–288 (1906); R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys. 37, 2775–2781 (1966).
[CrossRef]

Phys. Rev. B (3)

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal systems: I. Theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

W. R. Holland, D. G. Hall, “Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27, 7765–7768 (1983).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Z. Phys. (2)

E. David, “Deutung der Anomalien der optischen Konstanten dünner Metallschichten,” Z. Phys. 144, 389–406 (1939).

H. Schopper, “Die Untersuchung dünner absorbierender Schichten mit Hilfe der absoluten Phase,” Z. Phys. 130, 565–584 (1951).
[CrossRef]

Other (9)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.3, p. 145.

R. R. Singer, “Optische Eigenschaften diskontinuierlicher metallischer Filme,” Ph.D. dissertation (Graz University, Graz, Austria, 1991).

O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worth, London, 1955), Chap. 5, p. 139.

L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970), Chap. 8, p. 8–32.

R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, S. A. Rice, eds. (Wiley, New York, 1978), Vol. 37, pp. 1–65.
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964), Chap. 1.6, p. 62.

R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

A. Wokaun, “Surface enhanced electromagnetic processes,” in Solid State Physics, H. Ehrenrein, D. Turnbull, eds. (Academic, San Diego, Calif., 1983), Vol. 38, pp. 223–294.
[CrossRef]

A. Otto, “Surface enhanced Raman scattering: ‘classical’ and ‘chemical’ origins,” in Light Scattering in Solids, M. Cardona, G. Güntherodt, eds., Vol. 54 of Springer Series Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 289–418.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic cross section of the three-layer system consisting of a smooth silver surface, a SiOx spacer layer of variable thickness dSiOx, and a silver-island film. (b) Colored mirror effect obtained by the three-layer system. Each step corresponds to an increase in quartz thickness of 10 nm. Lower photograph, 0 < dSiOx < 130 nm; upper photograph, 130 nm < dSiOx < 260 nm.

Fig. 2
Fig. 2

Reflectivity spectra of the three-layer system. The SiOx thickness dm (nanometers) of the interlayer is given as a parameter for each curve.

Fig. 3
Fig. 3

TEM photograph of a 5.0-nm mass-thickness, silver-island film (carbon replica).

Fig. 4
Fig. 4

Distribution histogram of top-view radii of a 5.0-nm, mass-thickness, silver-island film as determined from the TEM photograph in Fig. 3. The numbers of particles have been determined by an area that is 0.4 μm2 in size.

Fig. 5
Fig. 5

Dielectric function of a 5.0-nm, silver-island film. (a) The measured points as well as the model calculated from Eqs. (1) and (2) (solid curves) are shown. (b) The corresponding absorbance spectra (the measured points are shown by a dashed curve; the calculated model is shown by the solid curve).

Fig. 6
Fig. 6

Calculated reflectivity spectra of the three-layer system for the 5.0-nm island film. The SiOx mass thickness dm used as an input for the calculations is given as a parameter.

Fig. 7
Fig. 7

Calculated reflectivity spectra of the three-layer system for a (a) 3.0-nm and (b) 7.0-nm mass-thickness island film, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 = n 1 2 - k 1 2 = n 0 2 - n 2 2 2 + λ 2 π d 1 [ 2 n 0 n 2 R + R T - ( n 2 - n 0 ) 2 - ( 4 π n 1 k 1 d 1 λ ) 2 + ( n 1 2 k 1 2 4 ) × ( 4 π d 1 λ ) 4 ( n 1 2 - k 1 2 + n 0 n 2 ) ] 1 / 2 ,
1 = 2 n 1 k 1 = λ 2 π d 1 n 0 n 2 n 2 - n 0 R - R T ,
α i ( ω ) = V 1 - m ( ω ) m ( ω ) + [ 1 - m ( ω ) ] L i ,             i = x , y , z ,
L a = g ( e ) 2 e 2 { π 2 - a tan [ g ( e ) ] } - g 2 ( e ) 2 ,
g ( e ) = ( 1 - e 2 e 2 ) 1 / 2 ,             e 2 = 1 - c 2 a 2 .
h ( a ) = H [ 1 - exp ( - a / H ) ] .
w i = 1 G ( 2 π ) 1 / 2 exp [ ( a - F ) 2 2 G 2 ] ,
χ ( ω ) = N v w i α i ( ω ) ,
A r = R 0 E 0 = r 1 [ 1 + r II r III exp ( - 2 i ω c n 2 d 2 ) ] exp ( i ω c n 1 d 1 ) + [ r II + r III ( exp - 2 i ω c n 2 d 2 ) ] exp ( - i ω c n 1 d 1 ) [ 1 + r II r III exp ( - 2 i ω c n 2 d 2 ) ] exp ( i ω c n 1 d 1 ) + r I [ r II + r III exp ( - 2 i ω c n 2 d 2 ) ] exp ( - i ω c n 1 d 1 ) ,
r I = n 0 - n 1 n 0 + n 1 ,             r II = n 1 - n 2 n 1 + n 2 ,             r III = n 2 - n 3 n 2 + n 3 ,

Metrics