Abstract

The use of a multimode (compact-disk type) laser diode in a dual Michelson interferometer arrangement is investigated, both theoretically and experimentally, by using the technique of coherence length modulation. A reproducible way of shifting the interference regions is considered for the potential use of the technique in optical sensors, for flow or distance measurement.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
    [CrossRef]
  2. T. Bosselmann, “Multimode-fibre coupled white-light interferometric position sensor,” in Optical Fiber Sensors, A. N. Chester, S. Martellucci, A. M. Verga Scheggi, eds., Vol. 132 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1987), pp. 429–432.
    [CrossRef]
  3. G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
    [CrossRef]
  4. M. Born, E. Wolf, Principles of Optics (Oxford U. Press, New York, 1980), pp. 360–367.
  5. S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fibre Sensors (Institution of Electrical Engineers, London, 1985), pp. 132–135.
  6. Y. N. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
    [CrossRef] [PubMed]
  7. Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
    [CrossRef]
  8. I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

1990 (1)

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
[CrossRef]

1989 (1)

1988 (1)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

1987 (1)

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

1977 (1)

I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

Al-Chalabi, S. A.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fibre Sensors (Institution of Electrical Engineers, London, 1985), pp. 132–135.

Beheim, G.

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Oxford U. Press, New York, 1980), pp. 360–367.

Bosselmann, T.

T. Bosselmann, “Multimode-fibre coupled white-light interferometric position sensor,” in Optical Fiber Sensors, A. N. Chester, S. Martellucci, A. M. Verga Scheggi, eds., Vol. 132 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1987), pp. 429–432.
[CrossRef]

Culshaw, B.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fibre Sensors (Institution of Electrical Engineers, London, 1985), pp. 132–135.

Davies, D. E. N.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fibre Sensors (Institution of Electrical Engineers, London, 1985), pp. 132–135.

Farahi, F.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Fritsch, K.

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Grattan, K. T. V.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
[CrossRef]

Y. N. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[CrossRef] [PubMed]

Ikegami, T.

I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

Jackson, D. A.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Machida, S.

I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

Meggitt, B. T.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
[CrossRef]

Y. N. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[CrossRef] [PubMed]

Nanata, K.

I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

Ning, Y. N.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
[CrossRef]

Y. N. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[CrossRef] [PubMed]

Palmer, A. W.

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
[CrossRef]

Y. N. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[CrossRef] [PubMed]

Poorman, R. N.

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Takeshi, I. T. O.

I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Oxford U. Press, New York, 1980), pp. 360–367.

Appl. Opt. (1)

Electron. Lett. (1)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Fiber-optic interferometric sensor utilizing low coherence length source-resolution enhancement,” Electron. Lett. 24, 472–474 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Y. N. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual interferometer configuration,” IEEE J. Lightwave Technol. 8, 1773–1778 (1990).
[CrossRef]

IEEE. J. Quantum Electron. (1)

I. T. O. Takeshi, S. Machida, K. Nanata, T. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE. J. Quantum Electron. QE-13, 574–579 (1977).

Rev. Sci. Instrum. (1)

G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987).
[CrossRef]

Other (3)

M. Born, E. Wolf, Principles of Optics (Oxford U. Press, New York, 1980), pp. 360–367.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fibre Sensors (Institution of Electrical Engineers, London, 1985), pp. 132–135.

T. Bosselmann, “Multimode-fibre coupled white-light interferometric position sensor,” in Optical Fiber Sensors, A. N. Chester, S. Martellucci, A. M. Verga Scheggi, eds., Vol. 132 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1987), pp. 429–432.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic optical arrangement of the dual-coupled Michelson interferometer.

Fig. 2
Fig. 2

Schematic output spectral characteristics of the CD-type laser diode used in this study.

Fig. 3
Fig. 3

Output signal generated by the vibration of mirror M2; vertical scale is in arbitrary units.

Fig. 4
Fig. 4

Experimental results of the peak value of the signal intensity versus ΔL1 (mm), with L2 = 0.

Fig. 5
Fig. 5

Experimental results of the peak value of the signal intensity versus ΔL1 (mm), with L2 = 0.3 mm.

Fig. 6
Fig. 6

Experimental results of the peak value of the signal intensity versus ΔL2 (mm), with L2 = 0.2 mm.

Fig. 7
Fig. 7

Experimental results of the peak value of the signal intensity versus ΔL2 (mm), with L1 = 0.4 mm.

Fig. 8
Fig. 8

Plot of two sets of peak amplitudes of the shifted interference regions with L1 = 10 mm.

Fig. 9
Fig. 9

Optical interference signal detected from the first interferometer; vertical scale is in arbitrary units.

Fig. 10
Fig. 10

Optical interference signal detected from the second interferometer; vertical scale is in arbitrary units.

Fig. 11
Fig. 11

Experimental results of the peak value of the signal intensity versus ΔL2 (mm), with L1 = 0.2 mm and the first oscillator working at a frequency of 125 Hz and the second one at 200 Hz.

Fig. 12
Fig. 12

Optical interference signal in the shifted regions; vertical scale is in arbitary units.

Fig. 13
Fig. 13

Experimental (solid curve) and theoretical (dashed curve) results of the peak value of the interference region shifted from zero order υ the OPD in the mirror.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ϕ 1 = 2 π ( 2 Δ L 1 ) / λ = 2 πσ L 1 ,
L 1 = L 10 + L 1 s sin ( ω s t ) ,
E j 1 = ( A 0 / 2 ) exp [ π ( j Δ σ δσ ) 2 ] exp ( i ω t ) ,
E j 2 = ( A 0 / 2 ) exp [ π ( j Δ σ δσ ) 2 ] exp ( i ω t + i ϕ 1 ) ,
ϕ 2 = 2 πσ j L 2 .
L 2 = L 20 + L 2 r sin ( ω r t ) ,
E j 1 = ( A 0 / 4 ) exp [ π ( j Δ σ δσ ) 2 ] exp ( i ω t ) ,
E j 2 = ( A 0 / 4 ) exp [ π ( j Δ σ δσ ) 2 ] exp ( i ω t + i ϕ 1 ) ,
E j 3 = ( A 0 / 4 ) exp [ π ( j Δ σ δσ ) 2 ] exp ( i ω t + i ϕ 2 ) ,
E j 4 = ( A 0 / 4 ) exp [ π ( j Δ σ δσ ) 2 ] exp [ i ( ω t + ϕ 1 + ϕ 2 ) ] .
E j = E j 1 + E j 2 + E j 3 + E j 4 ,
I j = ( E j 1 + E j 2 + E j 3 + E j 4 ) ( E j 1 + E j 2 + E j 3 + E j 4 ) * .
I j = I 0 + I 1 + I 2 + I 3 + I 4 ,
I 0 = A 0 2 / 4 exp [ 2 π ( j Δ σ δσ ) 2 ] ,
I 1 = ( A 0 2 / 4 ) cos ( ϕ 1 ) exp [ 2 π ( j Δ σ δσ ) 2 ] ,
I 2 = ( A 0 2 / 4 ) cos ( ϕ 2 ) exp [ 2 π ( j Δ σ δσ ) 2 ] ,
I 3 = ( A 0 2 / 8 ) cos ( ϕ 1 + ϕ 2 ) exp [ 2 π ( j Δ σ δσ ) 2 ] ,
I 4 = ( A 0 2 / 8 ) cos ( ϕ 1 + ϕ 2 ) exp [ 2 π ( j Δ σ δσ ) 2 ] .
I = j = m + m I j
I = j = m + m I 0 + j = m + m I 1 + j = m + m I 2 + j = m + m I 3 + j = m + m I 4 .
I 4 = ( A 0 / 8 ) cos ( ϕ 1 ϕ 2 ) exp { 2 π [ j 2 ( Δ σ δσ ) 2 ] exp ( Δ L / L c ) } ,
I p = k exp [ ( Δ L / L c ) ] ,

Metrics