Abstract

The indicatrices of ground glass surfaces were obtained as a measurement of their roughness and expressed by the Minnaert constant k. The indicatrices were also obtained for downtown areas of San Francisco and Berkeley and the desert areas in Nevada and California by using Landsat multispectral scanner (MSS) data with varying Sun elevations. The values of k for each training area were obtained. Finally the biconical spectral reflectance of sand collected from the desert of the training areas was measured in the laboratory, and the computed values of k were compared with those derived from the Landsat MSS data.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Bennett, J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51, 123–129 (1961).
    [CrossRef]
  2. D. E. Barrick, W. H. Peake, “A review of scattering from surfaces with different roughness scales,” Radio Sci. 3, 865–868 (1968).
  3. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970).
    [CrossRef] [PubMed]
  4. R. Gerharz, “Photographishe Bestimmung der Indikatrix des Streulichtes,” Z. Instrumentenkd. 72(2), 46–48 (1964).
  5. H. Okayama, I. Ogura, “Indicatrices of the earth’s surface reflection from Landsat MSS data,” Appl. Opt. 22, 3652–3656 (1983).
    [CrossRef] [PubMed]
  6. J. A. Smith, T. L. Lin, K. J. Ranson, “The Lambertian assumption and Landsat data,” Photogramm. Eng. Remote Sensing 46, 1183–1189 (1980).
  7. J. R. Eyton, “Low-relief topographic enhancement in a Landsat snow-cover scene,” Remote Sensing Environ. 26, 105–118 (1989).
    [CrossRef]
  8. M. Minnaert, “The reciprocity principle in lunar photometry,” Astrophys. J. 93, 404–410 (1941).
    [CrossRef]
  9. A. B. Binder, J. C. Jones, “Spectrophotometry studies of the photometric function, composition, and distribution of the surface materials of Mars,” J. Geophys. Res. 77, 3005–3020 (1972).
    [CrossRef]
  10. A. T. Young, S. A. Collins, “Photometric properties of the Mariner cameras and of selected regions on Mars,” J. Geophys. Res. 76, 432–437 (1971).
    [CrossRef]
  11. J. Veverka, L. Wasserman, “Effects of surface roughness on the photometric properties of Mars,” Icarus 16, 281–290 (1972).
    [CrossRef]
  12. J. M. Bennett, J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces,” Appl. Opt. 20, 1785–1802 (1981).
    [CrossRef] [PubMed]
  13. Goddard Space Flight Center Landsat News Letter (NASA, Greenbelt, Md., 1June1977).
  14. E. V. Ashburn, R. G. Weldon, “Spectral diffuse reflectance of desert surface,” J. Opt. Soc. Am. 46, 583–586 (1956).
    [CrossRef]

1989 (1)

J. R. Eyton, “Low-relief topographic enhancement in a Landsat snow-cover scene,” Remote Sensing Environ. 26, 105–118 (1989).
[CrossRef]

1983 (1)

1981 (1)

1980 (1)

J. A. Smith, T. L. Lin, K. J. Ranson, “The Lambertian assumption and Landsat data,” Photogramm. Eng. Remote Sensing 46, 1183–1189 (1980).

1972 (2)

J. Veverka, L. Wasserman, “Effects of surface roughness on the photometric properties of Mars,” Icarus 16, 281–290 (1972).
[CrossRef]

A. B. Binder, J. C. Jones, “Spectrophotometry studies of the photometric function, composition, and distribution of the surface materials of Mars,” J. Geophys. Res. 77, 3005–3020 (1972).
[CrossRef]

1971 (1)

A. T. Young, S. A. Collins, “Photometric properties of the Mariner cameras and of selected regions on Mars,” J. Geophys. Res. 76, 432–437 (1971).
[CrossRef]

1970 (1)

1968 (1)

D. E. Barrick, W. H. Peake, “A review of scattering from surfaces with different roughness scales,” Radio Sci. 3, 865–868 (1968).

1964 (1)

R. Gerharz, “Photographishe Bestimmung der Indikatrix des Streulichtes,” Z. Instrumentenkd. 72(2), 46–48 (1964).

1961 (1)

1956 (1)

1941 (1)

M. Minnaert, “The reciprocity principle in lunar photometry,” Astrophys. J. 93, 404–410 (1941).
[CrossRef]

Ashburn, E. V.

Barrick, D. E.

D. E. Barrick, W. H. Peake, “A review of scattering from surfaces with different roughness scales,” Radio Sci. 3, 865–868 (1968).

Bennett, H. E.

Bennett, J. M.

Binder, A. B.

A. B. Binder, J. C. Jones, “Spectrophotometry studies of the photometric function, composition, and distribution of the surface materials of Mars,” J. Geophys. Res. 77, 3005–3020 (1972).
[CrossRef]

Collins, S. A.

A. T. Young, S. A. Collins, “Photometric properties of the Mariner cameras and of selected regions on Mars,” J. Geophys. Res. 76, 432–437 (1971).
[CrossRef]

Dancy, J. H.

Eyton, J. R.

J. R. Eyton, “Low-relief topographic enhancement in a Landsat snow-cover scene,” Remote Sensing Environ. 26, 105–118 (1989).
[CrossRef]

Gerharz, R.

R. Gerharz, “Photographishe Bestimmung der Indikatrix des Streulichtes,” Z. Instrumentenkd. 72(2), 46–48 (1964).

Jones, J. C.

A. B. Binder, J. C. Jones, “Spectrophotometry studies of the photometric function, composition, and distribution of the surface materials of Mars,” J. Geophys. Res. 77, 3005–3020 (1972).
[CrossRef]

Lin, T. L.

J. A. Smith, T. L. Lin, K. J. Ranson, “The Lambertian assumption and Landsat data,” Photogramm. Eng. Remote Sensing 46, 1183–1189 (1980).

Minnaert, M.

M. Minnaert, “The reciprocity principle in lunar photometry,” Astrophys. J. 93, 404–410 (1941).
[CrossRef]

Nicodemus, F. E.

Ogura, I.

Okayama, H.

Peake, W. H.

D. E. Barrick, W. H. Peake, “A review of scattering from surfaces with different roughness scales,” Radio Sci. 3, 865–868 (1968).

Porteus, J. O.

Ranson, K. J.

J. A. Smith, T. L. Lin, K. J. Ranson, “The Lambertian assumption and Landsat data,” Photogramm. Eng. Remote Sensing 46, 1183–1189 (1980).

Smith, J. A.

J. A. Smith, T. L. Lin, K. J. Ranson, “The Lambertian assumption and Landsat data,” Photogramm. Eng. Remote Sensing 46, 1183–1189 (1980).

Veverka, J.

J. Veverka, L. Wasserman, “Effects of surface roughness on the photometric properties of Mars,” Icarus 16, 281–290 (1972).
[CrossRef]

Wasserman, L.

J. Veverka, L. Wasserman, “Effects of surface roughness on the photometric properties of Mars,” Icarus 16, 281–290 (1972).
[CrossRef]

Weldon, R. G.

Young, A. T.

A. T. Young, S. A. Collins, “Photometric properties of the Mariner cameras and of selected regions on Mars,” J. Geophys. Res. 76, 432–437 (1971).
[CrossRef]

Appl. Opt. (3)

Astrophys. J. (1)

M. Minnaert, “The reciprocity principle in lunar photometry,” Astrophys. J. 93, 404–410 (1941).
[CrossRef]

Icarus (1)

J. Veverka, L. Wasserman, “Effects of surface roughness on the photometric properties of Mars,” Icarus 16, 281–290 (1972).
[CrossRef]

J. Geophys. Res. (2)

A. B. Binder, J. C. Jones, “Spectrophotometry studies of the photometric function, composition, and distribution of the surface materials of Mars,” J. Geophys. Res. 77, 3005–3020 (1972).
[CrossRef]

A. T. Young, S. A. Collins, “Photometric properties of the Mariner cameras and of selected regions on Mars,” J. Geophys. Res. 76, 432–437 (1971).
[CrossRef]

J. Opt. Soc. Am. (2)

Photogramm. Eng. Remote Sensing (1)

J. A. Smith, T. L. Lin, K. J. Ranson, “The Lambertian assumption and Landsat data,” Photogramm. Eng. Remote Sensing 46, 1183–1189 (1980).

Radio Sci. (1)

D. E. Barrick, W. H. Peake, “A review of scattering from surfaces with different roughness scales,” Radio Sci. 3, 865–868 (1968).

Remote Sensing Environ. (1)

J. R. Eyton, “Low-relief topographic enhancement in a Landsat snow-cover scene,” Remote Sensing Environ. 26, 105–118 (1989).
[CrossRef]

Z. Instrumentenkd. (1)

R. Gerharz, “Photographishe Bestimmung der Indikatrix des Streulichtes,” Z. Instrumentenkd. 72(2), 46–48 (1964).

Other (1)

Goddard Space Flight Center Landsat News Letter (NASA, Greenbelt, Md., 1June1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Viewing geometries for a satellite or high-altitude aircraft sensor with changing zenith angle (z) of the Sun.

Fig. 2
Fig. 2

Schematic diagram of a goniophotometer.

Fig. 3
Fig. 3

Indicatrices of ground glass obtained by calculation when the Minnaert constants k are 0.7, 1.0, and 2.0

Fig. 4
Fig. 4

Indicatrices of ground glass for three grit sizes, #46, #500, and #3000, obtained by measurement.

Fig. 5
Fig. 5

Landsat MSS image of a, San Francisco and b, Berkeley selected as urban training areas.

Fig. 6
Fig. 6

Landsat MSS images of Walker Lake area (A) and Mono Lake area (B) selected as training areas of the desert (c and d).

Fig. 7
Fig. 7

Indicatrices of desert areas near Walker Lake and Mono Lake, and of urban areas of San Francisco and Berkeley obtained from the Landsat MSS band 4.

Fig. 8
Fig. 8

Indicatrices of desert areas near Walker Lake and Mono Lake and of urban areas of San Francisco and Berkeley obtained from the Landsat MSS band 5.

Fig. 9
Fig. 9

Indicatrices of desert areas near Walker Lake and Mono Lake and of urban areas of San Francisco and Berkeley obtained from the Landsat MSS band 6.

Fig. 10
Fig. 10

Spectrogram of scattered light from the sand of the desert area of Mono Lake measured by a PFS.

Fig. 11
Fig. 11

Indicatrices of the sand of desert areas of Walker Lake and Mono Lake in the 720–800-nm wavelength range obtained from the PFS data.

Tables (3)

Tables Icon

Table I Minnaert Constant k, the rms Roughness (Rrms), Sieve Mesh Number, and Mesh Size of Each Ground Glass

Tables Icon

Table II Collection Dates of Landsat MSS Data for Each Training Area and Their Solar Zenith Angles

Tables Icon

Table III Minnaert Constant of Each Training Area Obtained from Landsat MSS Data

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L ( λ, e ) = L n ( λ ) cos k ( λ ) i cos k ( λ ) 1 e .
L ( λ, e ) = L n ( λ ) cos k ( λ ) i .
log L ( λ, e ) = log L n ( λ ) + k ( λ ) log cos i .
y = log L ( λ, e ) , x = log cos i , b = log L n ( λ ) ,
y = k ( λ ) x + b .
R i = R min i + ( R max i R min i ) 127 × N i ,

Metrics