Abstract

A method for measuring the mode-index ratio n of two regions of a planar waveguide with an accuracy of better than 2 in 105 is presented. Simple and reliable techniques were utilized to produce two contiguous waveguides, with different refractive indices, on a common substrate. The two waveguiding regions were fabricated both in LiNbO3 and in BK-7 glass by using titanium indiffusion followed by a proton-exchange (TIPE) process and a two-step Ag+/Na+ ion-exchange technique, respectively. The measured mode-index ratios obtained by our method agreed well with values obtained with the conventional prism-coupling technique.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Yip, J. Albert, “Characterization of planar optical waveguides by K+ ion exchange in glass,” Opt. Lett. 10, 151–153 (1985).
    [CrossRef] [PubMed]
  2. D. W. Vahey, “Corrected waveguide geodesic lenses for inte grated acoustooptic spectrum analyzers,” in Proc. IEEE Ultrasono Symposium, J. deKlerk, B. R. McAvoy, eds. (Institute of Electrical and Electronics Engineers, Cherry Hill, N.J., 1978), pp. 70–73.
  3. G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
    [CrossRef]
  4. G. Stewart, P. J. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electron. QE-14, 930–934 (1978).
    [CrossRef]
  5. M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
    [CrossRef]
  6. V. Hinkov, E. Ice, “Control of birefringence in Ti:LiNbO3 optical waveguides by proton exchange of lithium ions,” IEEE J. Lightwave Technol. LT-4, 444–448 (1986).
    [CrossRef]
  7. H. Onodera, I. Awai, J. Ikenoue, “Refractive-index measure ment of bulk materials: prism coupling methods,” Appl. Opt. 22, 1194–1197 (1983).
    [CrossRef] [PubMed]
  8. Y. R. Ulrich, R. J. Martin, “Geometrical optics in film light guides,” Appl. Opt. 10, 2077–2080 (1971).
    [CrossRef] [PubMed]

1986 (1)

V. Hinkov, E. Ice, “Control of birefringence in Ti:LiNbO3 optical waveguides by proton exchange of lithium ions,” IEEE J. Lightwave Technol. LT-4, 444–448 (1986).
[CrossRef]

1985 (1)

1983 (1)

1982 (1)

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

1978 (1)

G. Stewart, P. J. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electron. QE-14, 930–934 (1978).
[CrossRef]

1977 (1)

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

1971 (1)

Albert, J.

Awai, I.

Botineau, J.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

De Micheli, M.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

DeLakue, R. M.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Hinkov, V.

V. Hinkov, E. Ice, “Control of birefringence in Ti:LiNbO3 optical waveguides by proton exchange of lithium ions,” IEEE J. Lightwave Technol. LT-4, 444–448 (1986).
[CrossRef]

Ice, E.

V. Hinkov, E. Ice, “Control of birefringence in Ti:LiNbO3 optical waveguides by proton exchange of lithium ions,” IEEE J. Lightwave Technol. LT-4, 444–448 (1986).
[CrossRef]

Ikenoue, J.

Laybourn, P. J.

G. Stewart, P. J. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electron. QE-14, 930–934 (1978).
[CrossRef]

Laybourn, P. J. R.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Martin, R. J.

Millar, C. A.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Onodera, H.

Ostrowsky, D. B.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

Papuchon, M.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

Sibillot, P.

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

Stewart, G.

G. Stewart, P. J. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electron. QE-14, 930–934 (1978).
[CrossRef]

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Ulrich, Y. R.

Vahey, D. W.

D. W. Vahey, “Corrected waveguide geodesic lenses for inte grated acoustooptic spectrum analyzers,” in Proc. IEEE Ultrasono Symposium, J. deKlerk, B. R. McAvoy, eds. (Institute of Electrical and Electronics Engineers, Cherry Hill, N.J., 1978), pp. 70–73.

Wilkinson, C. D. W.

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Yip, G. L.

Appl. Opt. (2)

IEEE J. Lightwave Technol. (1)

V. Hinkov, E. Ice, “Control of birefringence in Ti:LiNbO3 optical waveguides by proton exchange of lithium ions,” IEEE J. Lightwave Technol. LT-4, 444–448 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. DeLakue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

G. Stewart, P. J. Laybourn, “Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electron. QE-14, 930–934 (1978).
[CrossRef]

Opt. Commun. (1)

M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate,” Opt. Commun. 42, 101–103 (1982).
[CrossRef]

Opt. Lett. (1)

Other (1)

D. W. Vahey, “Corrected waveguide geodesic lenses for inte grated acoustooptic spectrum analyzers,” in Proc. IEEE Ultrasono Symposium, J. deKlerk, B. R. McAvoy, eds. (Institute of Electrical and Electronics Engineers, Cherry Hill, N.J., 1978), pp. 70–73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry used for the measurement of the mode-index ratio of two regions. The period of the fringes formed at the intersection of two coherent beams is directly related to n.

Fig. 2
Fig. 2

Experimental arrangement for the measurement of the fringe period.

Fig. 3
Fig. 3

Interference pattern resulting from two initially parallel guided beams passing through a TIPE triangle. The proton exchange was carried out for 1.75 h at a temperature of 225°C. The scale indicates the linear scale of the photograph.

Fig. 4
Fig. 4

Interference pattern resulting from two initially parallel guided beams passing through a double-diffused BK-7 triangle. The first step was performed in a 2% AgNO3/NaNO3 melt, and the second step in a 0.25% melt for 40 min at 320°C.

Tables (3)

Tables Icon

Table I Measured Extraordinary Mode-Index Ratios for Two Waveguides in LiNbO3 Crystals

Tables Icon

Table II Measured Mode-Index Ratios for Two Waveguides in BK-7 Glass for TE Polarized Light

Tables Icon

Table III Measured Mode-Index Ratios for Two Waveguides in BK-7 Glass for TM Polarized Light

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n = 1 sin α { sin [ sin 1 ( λ 0 2 Λ n 2 ) + α ] } .
Δ n = [ ( n Λ Δ Λ ) 2 + ( n n 2 Δ n 2 ) 2 ] 1 / 2 ,
Δ ( 2 θ ) = 2 θ ( ) 2 θ ( = 0 ) = sin 1 { ( n 1 n 2 ) sin [ α ( n 2 n 1 ) 1 ] } + sin 1 { ( n 1 n 2 ) sin [ α + ( n 2 n 1 ) 2 ] } 2 sin 1 ( n 1 n 2 sin α ) ,

Metrics