Abstract

We report the experimental verification of a simulation model for cw energy transfer dye lasers. Experimentais results obtained with Rhodamine 610 (donor) and Nile Blue 690 (acceptor) confirm theoretical model predictions.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Moeller, C. M. Verber, A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
    [CrossRef]
  2. S. A. Ahmed, J. S. Gergerly, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
    [CrossRef]
  3. E. G. Marason, “Energy transfer dye mixture for argon pumped dye laser operation in the 700 to 800 nm region,” Opt. Commun. 40, 212–214 (1982).
    [CrossRef]
  4. P. M. W. French, J. A. R. Williams, J. R. Taylor, “Passive mode locking of a continuous wave energy transfer dye laser operating in the near infrared around 750 nm,” Opt. Lett. 12, 684–686 (1987).
    [CrossRef] [PubMed]
  5. P. J. Sebastain, K. Sathianandan, “Energy transfer Rhodamine 6G—Safranin T dye laser,” Opt. Commun. 32, 422–424 (1980).
    [CrossRef]
  6. M. Ali, B. Panoutsopoulos, S. A. Ahmed, “On the feasibility of generating tunable cw argon laser pumped energy transfer dye laser emission in the near IR spectral region,” Appl. Opt. 30, 312–316 (1990).
    [CrossRef]
  7. M. A. Ali, S. A. Ahmed, “Comprehensive examination of radiationless energy transfer models in dyes: comparisons of theory and experiment,” J. Chem. Phys. 90, 1484–1491 (1989).
    [CrossRef]
  8. M. A. Ali, S. A. Ahmed, A. S. Chokhavatia, “Examination of a generalized model for radiationless energy transfer in dyes,” J. Chem. Phys. 91, 2892–2897 (1989).
    [CrossRef]
  9. B. B. Snavely, “Continuous wave dye lasers,” in Dye Lasers, F. P. Schafer, ed. (Springer-Verlag, New York, 1973), pp. 91–120.
    [CrossRef]
  10. O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).
  11. P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).
  12. T. Urisu, K. Kajiyama, “Concentration dependence of the gain spectrum in energy transfer dye mixtures,” J. Appl. Phys. 47, 3563–3565 (1976).
    [CrossRef]
  13. P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).
  14. P. J. Sebastain, K. Sathianandan, “Donor concentration dependence of the emission peak in Rhodamine 6G–Rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113–114 (1980).
    [CrossRef]
  15. H. A. Pike, “Organic dye lasers,” Ph.D. dissertation (University of Rochester, Rochester, New York, 1971).
  16. J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

1990 (1)

1989 (2)

M. A. Ali, S. A. Ahmed, “Comprehensive examination of radiationless energy transfer models in dyes: comparisons of theory and experiment,” J. Chem. Phys. 90, 1484–1491 (1989).
[CrossRef]

M. A. Ali, S. A. Ahmed, A. S. Chokhavatia, “Examination of a generalized model for radiationless energy transfer in dyes,” J. Chem. Phys. 91, 2892–2897 (1989).
[CrossRef]

1987 (1)

1983 (1)

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).

1982 (2)

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).

E. G. Marason, “Energy transfer dye mixture for argon pumped dye laser operation in the 700 to 800 nm region,” Opt. Commun. 40, 212–214 (1982).
[CrossRef]

1980 (2)

P. J. Sebastain, K. Sathianandan, “Donor concentration dependence of the emission peak in Rhodamine 6G–Rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113–114 (1980).
[CrossRef]

P. J. Sebastain, K. Sathianandan, “Energy transfer Rhodamine 6G—Safranin T dye laser,” Opt. Commun. 32, 422–424 (1980).
[CrossRef]

1976 (1)

T. Urisu, K. Kajiyama, “Concentration dependence of the gain spectrum in energy transfer dye mixtures,” J. Appl. Phys. 47, 3563–3565 (1976).
[CrossRef]

1974 (1)

S. A. Ahmed, J. S. Gergerly, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

1971 (2)

C. E. Moeller, C. M. Verber, A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[CrossRef]

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).

Adelman, A. H.

C. E. Moeller, C. M. Verber, A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[CrossRef]

Ahmed, S. A.

M. Ali, B. Panoutsopoulos, S. A. Ahmed, “On the feasibility of generating tunable cw argon laser pumped energy transfer dye laser emission in the near IR spectral region,” Appl. Opt. 30, 312–316 (1990).
[CrossRef]

M. A. Ali, S. A. Ahmed, “Comprehensive examination of radiationless energy transfer models in dyes: comparisons of theory and experiment,” J. Chem. Phys. 90, 1484–1491 (1989).
[CrossRef]

M. A. Ali, S. A. Ahmed, A. S. Chokhavatia, “Examination of a generalized model for radiationless energy transfer in dyes,” J. Chem. Phys. 91, 2892–2897 (1989).
[CrossRef]

S. A. Ahmed, J. S. Gergerly, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

Alfano, R. R.

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).

Ali, M.

Ali, M. A.

M. A. Ali, S. A. Ahmed, “Comprehensive examination of radiationless energy transfer models in dyes: comparisons of theory and experiment,” J. Chem. Phys. 90, 1484–1491 (1989).
[CrossRef]

M. A. Ali, S. A. Ahmed, A. S. Chokhavatia, “Examination of a generalized model for radiationless energy transfer in dyes,” J. Chem. Phys. 91, 2892–2897 (1989).
[CrossRef]

Birks, J. B.

J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

Chokhavatia, A. S.

M. A. Ali, S. A. Ahmed, A. S. Chokhavatia, “Examination of a generalized model for radiationless energy transfer in dyes,” J. Chem. Phys. 91, 2892–2897 (1989).
[CrossRef]

Eberly, J. H.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).

French, P. M. W.

Gergerly, J. S.

S. A. Ahmed, J. S. Gergerly, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

Gersten, J. I.

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).

Kajiyama, K.

T. Urisu, K. Kajiyama, “Concentration dependence of the gain spectrum in energy transfer dye mixtures,” J. Appl. Phys. 47, 3563–3565 (1976).
[CrossRef]

Lu, P. Y.

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).

Marason, E. G.

E. G. Marason, “Energy transfer dye mixture for argon pumped dye laser operation in the 700 to 800 nm region,” Opt. Commun. 40, 212–214 (1982).
[CrossRef]

McColgin, W. C.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).

Moeller, C. E.

C. E. Moeller, C. M. Verber, A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[CrossRef]

Panoutsopoulos, B.

Peterson, O. G.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).

Pike, H. A.

H. A. Pike, “Organic dye lasers,” Ph.D. dissertation (University of Rochester, Rochester, New York, 1971).

Sathianandan, K.

P. J. Sebastain, K. Sathianandan, “Donor concentration dependence of the emission peak in Rhodamine 6G–Rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113–114 (1980).
[CrossRef]

P. J. Sebastain, K. Sathianandan, “Energy transfer Rhodamine 6G—Safranin T dye laser,” Opt. Commun. 32, 422–424 (1980).
[CrossRef]

Sebastain, P. J.

P. J. Sebastain, K. Sathianandan, “Energy transfer Rhodamine 6G—Safranin T dye laser,” Opt. Commun. 32, 422–424 (1980).
[CrossRef]

P. J. Sebastain, K. Sathianandan, “Donor concentration dependence of the emission peak in Rhodamine 6G–Rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113–114 (1980).
[CrossRef]

Snavely, B. B.

B. B. Snavely, “Continuous wave dye lasers,” in Dye Lasers, F. P. Schafer, ed. (Springer-Verlag, New York, 1973), pp. 91–120.
[CrossRef]

Taylor, J. R.

Urisu, T.

T. Urisu, K. Kajiyama, “Concentration dependence of the gain spectrum in energy transfer dye mixtures,” J. Appl. Phys. 47, 3563–3565 (1976).
[CrossRef]

Verber, C. M.

C. E. Moeller, C. M. Verber, A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[CrossRef]

Webb, J. P.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).

Williams, J. A. R.

Yu, Z. X.

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. E. Moeller, C. M. Verber, A. H. Adelman, “Laser pumping by excitation transfer in dye mixtures,” Appl. Phys. Lett. 18, 278–280 (1971).
[CrossRef]

J. Appl. Phys. (1)

T. Urisu, K. Kajiyama, “Concentration dependence of the gain spectrum in energy transfer dye mixtures,” J. Appl. Phys. 47, 3563–3565 (1976).
[CrossRef]

J. Appl. Phys. Lett. (1)

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, “Organic dye lasers threshold,” J. Appl. Phys. Lett. 42, 1917–1928 (1971).

J. Chem. Phys. (3)

M. A. Ali, S. A. Ahmed, “Comprehensive examination of radiationless energy transfer models in dyes: comparisons of theory and experiment,” J. Chem. Phys. 90, 1484–1491 (1989).
[CrossRef]

M. A. Ali, S. A. Ahmed, A. S. Chokhavatia, “Examination of a generalized model for radiationless energy transfer in dyes,” J. Chem. Phys. 91, 2892–2897 (1989).
[CrossRef]

S. A. Ahmed, J. S. Gergerly, “Energy transfer organic dye mixture lasers,” J. Chem. Phys. 61, 1584–1585 (1974).
[CrossRef]

Opt. Commun. (3)

E. G. Marason, “Energy transfer dye mixture for argon pumped dye laser operation in the 700 to 800 nm region,” Opt. Commun. 40, 212–214 (1982).
[CrossRef]

P. J. Sebastain, K. Sathianandan, “Energy transfer Rhodamine 6G—Safranin T dye laser,” Opt. Commun. 32, 422–424 (1980).
[CrossRef]

P. J. Sebastain, K. Sathianandan, “Donor concentration dependence of the emission peak in Rhodamine 6G–Rhodamine B energy transfer dye laser,” Opt. Commun. 35, 113–114 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (2)

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution. II. A concentration dependence,” Phys. Rev. A 27, 2100–2109 (1983).

P. Y. Lu, Z. X. Yu, R. R. Alfano, J. I. Gersten, “Picosecond studies of energy transfer of donor and acceptor dye molecules in solution,” Phys. Rev. A 26, 3610–3620 (1982).

Other (3)

B. B. Snavely, “Continuous wave dye lasers,” in Dye Lasers, F. P. Schafer, ed. (Springer-Verlag, New York, 1973), pp. 91–120.
[CrossRef]

H. A. Pike, “Organic dye lasers,” Ph.D. dissertation (University of Rochester, Rochester, New York, 1971).

J. B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental results of the fluorescence spectra of single dyes and of the dye mixture. The solvent used was ethylene glycol: ×, Rhodamine 610, [D] = 5 × 10−3; □, Nile Blue 690 [A] = 10−3; and ○, Donor, Rhodamine 610 and acceptor, Nile Blue 690 [D] = 5 × 10−3, [A] = 10−4.

Fig. 2
Fig. 2

Comparison of the theoretical and the experimental results. Donor, Rhodamine 610 at 5 × 10−3 mol/L and acceptor, Nile Blue at 10−3 mol/L. The solvent used was ethylene glycol: ○, measured fluorescence of the dye mixture; +, predicted gain of the dye mixture; *, measured laser output of dye mixture.

Fig. 3
Fig. 3

Comparison of the fluorescence for Rhodamine 590–Nile Blue 690 and Rhodamine 610–Nile Blue 690 (donor–acceptor) binary solutions in ethylene glycol: ○, Rhodamine 590–Nile Blue 690; *, Rhodamine 610–Nile Blue 690.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N 1 d d t = σ s d ( λ p ) I p ( r , N ) N 0 d N 1 d τ 0 d k n r N 1 d N 0 a ,
d N 1 a d t = I p ( r , z ) N 0 a σ s a ( λ p ) N 1 a τ 0 a k n r N 1 d N 0 a + α rad k f d N 1 d ,
g ( λ ) = N 1 a σ em a ( λ ) N 0 a σ s a ( λ ) N T a σ T a ( λ ) N 0 d σ s d ( λ ) ,
g ( λ ) = γ ( λ ) N 1 a N a σ s a ( λ ) N 0 d σ s d ( λ ) ,
γ ( λ ) = σ s a ( λ ) + σ em a ( λ ) + k s T τ T a [ σ s a ( λ ) σ T a ( λ ) ] .
G 0 ( λ ) = ( γ ( λ ) τ 0 a 4 P p ( 0 ) [ σ s d ( λ p ) N d f + σ s a ( λ p ) N 0 a σ s d ( λ p ) N d + σ s a ( λ p ) N 0 a ] × { 1 exp [ N d σ s d ( λ p ) d N 0 a σ s d ( λ p ) d ] b p h c } ) N a σ s a ( λ ) d N d σ s d ( λ ) d ,

Metrics