Abstract

The injection technique was applied to the generation of a circularly polarized pulse, with an energy of more than 5J, directly from a transversely excited atmospheric CO2 laser oscillator.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ishida, “Laser processing (welding, cutting and drilling),” Rev. Laser Eng. (in Japanese) 16, 448–455 (1988).
  2. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
    [CrossRef]
  3. P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
    [CrossRef]
  4. K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
    [CrossRef]
  5. J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
    [CrossRef]
  6. A. J. Alcock, P. B. Corkum, D. J. James, “A simple mode-locking technique for large-aperture TEA CO2 lasers,” Appl. Phys. Lett. 30, 148–159 (1977).
    [CrossRef]
  7. H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
    [CrossRef]
  8. P. E. Dyer, I. K. Perera, “Injection mode locking of a TEA CO2 laser on P and R transitions in the 9- and 10-μm bands,” Opt. Lett. 4, 250–252 (1979).
    [CrossRef] [PubMed]

1988 (1)

S. Ishida, “Laser processing (welding, cutting and drilling),” Rev. Laser Eng. (in Japanese) 16, 448–455 (1988).

1985 (1)

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

1984 (1)

H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
[CrossRef]

1979 (2)

P. E. Dyer, I. K. Perera, “Injection mode locking of a TEA CO2 laser on P and R transitions in the 9- and 10-μm bands,” Opt. Lett. 4, 250–252 (1979).
[CrossRef] [PubMed]

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
[CrossRef]

1977 (1)

A. J. Alcock, P. B. Corkum, D. J. James, “A simple mode-locking technique for large-aperture TEA CO2 lasers,” Appl. Phys. Lett. 30, 148–159 (1977).
[CrossRef]

1976 (1)

J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

1966 (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Alcock, A. J.

A. J. Alcock, P. B. Corkum, D. J. James, “A simple mode-locking technique for large-aperture TEA CO2 lasers,” Appl. Phys. Lett. 30, 148–159 (1977).
[CrossRef]

Aoki, Y.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

Brickman, R.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
[CrossRef]

Corkum, P. B.

A. J. Alcock, P. B. Corkum, D. J. James, “A simple mode-locking technique for large-aperture TEA CO2 lasers,” Appl. Phys. Lett. 30, 148–159 (1977).
[CrossRef]

Dyer, P. E.

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Ishida, S.

S. Ishida, “Laser processing (welding, cutting and drilling),” Rev. Laser Eng. (in Japanese) 16, 448–455 (1988).

James, D. J.

A. J. Alcock, P. B. Corkum, D. J. James, “A simple mode-locking technique for large-aperture TEA CO2 lasers,” Appl. Phys. Lett. 30, 148–159 (1977).
[CrossRef]

Kaldor, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
[CrossRef]

Lachambre, J.-L.

J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Lavigne, P.

J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Midorikawa, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Nagasaka, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

Namba, S.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
[CrossRef]

Noel, M.

J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Ohashi, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

Otis, G.

J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

Perera, I. K.

Rabinowitz, P.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
[CrossRef]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Shimada, T.

H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
[CrossRef]

Stein, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
[CrossRef]

Tashiro, H.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
[CrossRef]

Toyoda, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
[CrossRef]

Appl. Phys. Lett. (2)

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, “Efficient tunable H2 Raman laser,” Appl. Phys. Lett. 35, 739–741 (1979).
[CrossRef]

A. J. Alcock, P. B. Corkum, D. J. James, “A simple mode-locking technique for large-aperture TEA CO2 lasers,” Appl. Phys. Lett. 30, 148–159 (1977).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Tashiro, T. Shimada, K. Toyoda, S. Namba, “Studies on injection locking of a TEA-CO2 laser for stable high-power operation,” IEEE J. Quantum Electron. QE-20, 159–165 (1984).
[CrossRef]

J.-L. Lachambre, P. Lavigne, G. Otis, M. Noel, “Injection locking and mode selection in TEA-CO2 laser oscillators,” IEEE J. Quantum Electron. QE-12, 756–764 (1976).
[CrossRef]

J. Appl. Phys. (1)

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, “Output performance of a liquid-N2 cooled, para-H2 Raman laser,” J. Appl. Phys. 57, 1504–1508 (1985).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Rev. Laser Eng. (in Japanese) (1)

S. Ishida, “Laser processing (welding, cutting and drilling),” Rev. Laser Eng. (in Japanese) 16, 448–455 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. A pulsed CO2 laser was used as an injection source: PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Temporal behavior and FFT spectra of pulses from the injected TEA CO2 laser. Injection energies were (a) approximately 30 nJ and (b) 300 μJ, respectively.

Fig. 3
Fig. 3

Output energies through the analyzer, plotted as a function of the rotation angles. LP (filled circles) and CP (open circles) beams were injected with the same energies as were used in Figs. 2(a) and (b).

Metrics