Abstract

The molar volume of pentyl alcohol in dibutylphthalate (DBP) is determined from weight changes in a DBP droplet during alcohol vapor absorption in conjunction with volumetric changes that are determined from optical resonance spectra.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Davis, “Transport phenomena with single aerosol particles,” Aerosol Sci. Technol. 2, 121–144 (1983).
  2. P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2312 (1983).
    [CrossRef] [PubMed]
  3. K. H. Fung, I. N. Tang, H. R. Munkelwitz, “Study of condensational growth of water droplets by Mie resonance spectroscopy,” Appl. Opt. 26, 1282–1287 (1987).
    [CrossRef] [PubMed]
  4. R. C. Weast, ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, Ohio, 1981), p. C-478.

1987 (1)

1983 (2)

Ashkin, A.

Chylek, P.

Davis, E. J.

E. J. Davis, “Transport phenomena with single aerosol particles,” Aerosol Sci. Technol. 2, 121–144 (1983).

Dziedic, J. M.

Fung, K. H.

Munkelwitz, H. R.

Ramaswamy, V.

Tang, I. N.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Optical resonance and gravimetric data for a DBP droplet during the absorption of pentyl alcohol vapors.

Tables (1)

Tables Icon

Table I Partial Molar Volume of Pentyl Alcohol in DBP as Determined from Levitation Voltages and Optical Resonance Data

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ d = λ tan 1 ( m 2 1 ) 1 / 2 π ( m 2 1 ) 1 / 2 ,
V f / V i = ( 1 + Δ d / d i ) 3 ,
Δ V V f V i = V i [ ( 1 + Δ d / d i ) 3 1 ] .
n al = ρ DBP V i M al ( L V f / L V i 1 ) ,
Δ V n al υ al + n DBP υ DBP n DBP υ DBP 0 ,
υ al = M al [ ( 1 + Δ d / d i ) 3 1 ] ρ DBP ( L V f / L V i 1 ) .
d ¯ = 4 υ D g ( P P d ) d R T ,

Metrics