Abstract

Numerical studies of nonlinear prism coupling into thin-film organic material waveguides have been carried out. Results are presented showing that, for an undiluted, low absorption material, the electronic response dominates at pulse widths of tens of nanoseconds. The result of an increase in the absorption is that shorter pulses are necessary for access to the Kerr law nonlinearity alone. Guidelines are provided for distinguishing between electronic and thermal responses.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, G. I. Stegeman, “Prism coupling into ZnS waveguides: a classic example of a nonlinear coupler,” Opt. Lett. 11, 644–646 (1986).
    [CrossRef] [PubMed]
  2. Y. J. Shen, E. M. Carter, “Measurement of third order nonlinear susceptibilities by surface plasmons,” Appl. Phys. Lett. 41, 307–309 (1982).
    [CrossRef]
  3. F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
    [CrossRef]
  4. G. M. Carter, Y. J. Chen, S. K. Tripathy, “Intensity dependent index of refraction in multilayers of polydiacetylene,” Appl. Phys. Lett. 43, 891–893 (1983).
    [CrossRef]
  5. R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
    [CrossRef]
  6. D. Bloor, R. R. Chance, “Polydiacetylenes–Synthesis, Structure and Electronic Properties,” in Proceedings of the NATO Advanced Research Workshop, Vol. 102 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1985).
  7. W. M. Dennis, W. Blau, D. J. Bradley, “Picosecond degenerate four wave mixing in soluble polydiacetylenes,” Appl. Phys. Lett. 47, 200–202 (1985).
    [CrossRef]
  8. M. Leguime, J. P. Newmann, Chem. Phys. 26, 431–000 (1977).
    [CrossRef]
  9. A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
    [CrossRef]
  10. J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
    [CrossRef]
  11. G. Assanto, R. M. Fortenberry, C. T. Seaton, G. I. Stegeman, “Theory of pulsed excitation of nonlinear distributed prism couplers,” J. Opt. Soc. Am. B 5, 432–442 (1988).
    [CrossRef]
  12. R. Ulrich, “Theory of prism-film coupler by plane wave analysis,” J. Opt. Soc. Am. B 60, 1337–1350 (1970).
    [CrossRef]
  13. T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

1988 (1)

1987 (2)

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

1986 (2)

R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
[CrossRef]

G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, G. I. Stegeman, “Prism coupling into ZnS waveguides: a classic example of a nonlinear coupler,” Opt. Lett. 11, 644–646 (1986).
[CrossRef] [PubMed]

1985 (1)

W. M. Dennis, W. Blau, D. J. Bradley, “Picosecond degenerate four wave mixing in soluble polydiacetylenes,” Appl. Phys. Lett. 47, 200–202 (1985).
[CrossRef]

1983 (1)

G. M. Carter, Y. J. Chen, S. K. Tripathy, “Intensity dependent index of refraction in multilayers of polydiacetylene,” Appl. Phys. Lett. 43, 891–893 (1983).
[CrossRef]

1982 (1)

Y. J. Shen, E. M. Carter, “Measurement of third order nonlinear susceptibilities by surface plasmons,” Appl. Phys. Lett. 41, 307–309 (1982).
[CrossRef]

1981 (1)

T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

1980 (1)

A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
[CrossRef]

1977 (1)

M. Leguime, J. P. Newmann, Chem. Phys. 26, 431–000 (1977).
[CrossRef]

1970 (1)

R. Ulrich, “Theory of prism-film coupler by plane wave analysis,” J. Opt. Soc. Am. B 60, 1337–1350 (1970).
[CrossRef]

Assanto, G.

Blau, W.

W. M. Dennis, W. Blau, D. J. Bradley, “Picosecond degenerate four wave mixing in soluble polydiacetylenes,” Appl. Phys. Lett. 47, 200–202 (1985).
[CrossRef]

Bloor, D.

D. Bloor, R. R. Chance, “Polydiacetylenes–Synthesis, Structure and Electronic Properties,” in Proceedings of the NATO Advanced Research Workshop, Vol. 102 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1985).

Borshch, A.

A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
[CrossRef]

Bradley, D. J.

W. M. Dennis, W. Blau, D. J. Bradley, “Picosecond degenerate four wave mixing in soluble polydiacetylenes,” Appl. Phys. Lett. 47, 200–202 (1985).
[CrossRef]

Brodin, M.

A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
[CrossRef]

Carter, E. M.

Y. J. Shen, E. M. Carter, “Measurement of third order nonlinear susceptibilities by surface plasmons,” Appl. Phys. Lett. 41, 307–309 (1982).
[CrossRef]

Carter, G. M.

G. M. Carter, Y. J. Chen, S. K. Tripathy, “Intensity dependent index of refraction in multilayers of polydiacetylene,” Appl. Phys. Lett. 43, 891–893 (1983).
[CrossRef]

Chance, R. R.

D. Bloor, R. R. Chance, “Polydiacetylenes–Synthesis, Structure and Electronic Properties,” in Proceedings of the NATO Advanced Research Workshop, Vol. 102 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1985).

Chang, T. Y.

T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

Chellil, H.

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

Chen, Y. J.

G. M. Carter, Y. J. Chen, S. K. Tripathy, “Intensity dependent index of refraction in multilayers of polydiacetylene,” Appl. Phys. Lett. 43, 891–893 (1983).
[CrossRef]

Dennis, W. M.

W. M. Dennis, W. Blau, D. J. Bradley, “Picosecond degenerate four wave mixing in soluble polydiacetylenes,” Appl. Phys. Lett. 47, 200–202 (1985).
[CrossRef]

Fortenberry, R. M.

G. Assanto, R. M. Fortenberry, C. T. Seaton, G. I. Stegeman, “Theory of pulsed excitation of nonlinear distributed prism couplers,” J. Opt. Soc. Am. B 5, 432–442 (1988).
[CrossRef]

R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
[CrossRef]

Gibson, U. J.

Grec, D.

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

Koster, A.

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

Kuchibhatla, D.

Kukhtarve, N.

A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
[CrossRef]

Laval, S.

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

Leguime, M.

M. Leguime, J. P. Newmann, Chem. Phys. 26, 431–000 (1977).
[CrossRef]

Mai, X.

R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
[CrossRef]

Moshefzadeh, R.

R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
[CrossRef]

Newmann, J. P.

M. Leguime, J. P. Newmann, Chem. Phys. 26, 431–000 (1977).
[CrossRef]

Nunzi, J. M.

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

Paraire, N.

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

Pardo, F.

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

Seaton, C. T.

Shen, Y. J.

Y. J. Shen, E. M. Carter, “Measurement of third order nonlinear susceptibilities by surface plasmons,” Appl. Phys. Lett. 41, 307–309 (1982).
[CrossRef]

Stegeman, G. I.

Svensson, B.

Tripathy, S. K.

G. M. Carter, Y. J. Chen, S. K. Tripathy, “Intensity dependent index of refraction in multilayers of polydiacetylene,” Appl. Phys. Lett. 43, 891–893 (1983).
[CrossRef]

Ulrich, R.

R. Ulrich, “Theory of prism-film coupler by plane wave analysis,” J. Opt. Soc. Am. B 60, 1337–1350 (1970).
[CrossRef]

Volkov, V.

A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
[CrossRef]

Wright, E. M.

R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
[CrossRef]

Appl. Phys. Lett. (4)

Y. J. Shen, E. M. Carter, “Measurement of third order nonlinear susceptibilities by surface plasmons,” Appl. Phys. Lett. 41, 307–309 (1982).
[CrossRef]

G. M. Carter, Y. J. Chen, S. K. Tripathy, “Intensity dependent index of refraction in multilayers of polydiacetylene,” Appl. Phys. Lett. 43, 891–893 (1983).
[CrossRef]

R. M. Fortenberry, R. Moshefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, G. I. Stegeman, “Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett. 49, 687–689 (1986).
[CrossRef]

W. M. Dennis, W. Blau, D. J. Bradley, “Picosecond degenerate four wave mixing in soluble polydiacetylenes,” Appl. Phys. Lett. 47, 200–202 (1985).
[CrossRef]

Chem. Phys. (1)

M. Leguime, J. P. Newmann, Chem. Phys. 26, 431–000 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Pardo, H. Chellil, A. Koster, N. Paraire, S. Laval, “Experimental and theoretical study of ultrafast optical switching using guided mode excitation in silicon on sapphire,” IEEE J. Quantum Electron. QE-23, 545–549 (1987).
[CrossRef]

J. Appl. Phys. (1)

J. M. Nunzi, D. Grec, “Picosecond phase conjugation in polydiacetylene gels,” J. Appl. Phys. 62, 2198–2202 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. Borshch, M. Brodin, V. Volkov, N. Kukhtarve, “Phase conjugation by the degenerate six-photon mixing in semiconductors,” Opt. Commun. 35, 287–290 (1980).
[CrossRef]

Opt. Eng. (1)

T. Y. Chang, “Fast self-induced refractive index changes in optical media: a survey,” Opt. Eng. 20, 220–232 (1981).

Opt. Lett. (1)

Other (1)

D. Bloor, R. R. Chance, “Polydiacetylenes–Synthesis, Structure and Electronic Properties,” in Proceedings of the NATO Advanced Research Workshop, Vol. 102 of NATO ASI Series E (Nijhoff, Dordrecht, The Netherlands, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coupling geometry. A Guassian beam along the x axis is incident at an angle θ onto the prism base whose 90° corner is located at x s . A guide wave is generated and propagates for x > x s in the free waveguide.

Fig. 2
Fig. 2

Graph of prism coupling efficiency versus input energy for an integrating thermal nonlinearity n2 t t = 2.3 × 10−10 m2/J and an electronic nonlinearity of n2 = 4.5 × 10−17 m2/W. The efficiency curve for the electronic nonlinearity is plotted for a range of pulse widths (from 10 ps to 100 ns).

Fig. 3
Fig. 3

Graph of pulse energy required to reduce coupling efficiency by one-half versus pulse width. The material was assumed to have an electronic nonlinearity of 4.5 × 10−17 m2/W and an integrating thermal nonlinearity n2(t t of a, 2.3 × 10−9 m2/J; b, 11.5 × 10−10m2/J; c, 2.3 × 10−10m2/J; d, 2.3 × 10−11 m2/J.

Fig. 4
Fig. 4

Graph of coupling efficiency versus input pulse energy for a thermal nonlinearity of magnitude n2 t t = 2.3 × 10−10 m2/J and a relaxation time ranging from 1 μs to 1 ns.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d d x a gw ( x , t ) = t ˆ a in ( x , t ) exp [ i ϕ ( x , t ) ] [ α gw ( x , t ) z + 1 l c ] a gw ( x , t ) , ϕ ( x , t ) = [ β ( , 0 ) n p k 0 sin θ ] | x + ϕ NL ( x , t ) ,
Δ n = n 2 I ( x , t ) .
Δ n = n 2 τ t t I ( x , t 1 ) d t 1 ,
n 2 t τ t = d n d T α ρ C p ,
Δ n t = n 2 t τ t I ( x , t ) Δ n ( x , t ) τ t .

Metrics