Abstract

Modes haυing high-Q morphology-dependent resonances (MDR’s) can dominate the internal energy distribution in spheres eυen when excited by many linewidths from the resonant location.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Snow, S. X. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [CrossRef] [PubMed]
  2. A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
    [CrossRef] [PubMed]
  3. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987).
    [CrossRef]
  4. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [CrossRef] [PubMed]
  5. A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
    [CrossRef] [PubMed]
  6. G. Chen, W. P. Acker, R. K. Chang, S. C. Hill, “Fine structures in the stimulated Raman scattering from single droplets,” Opt. Lett. 16, 117–119 (1991).
    [CrossRef] [PubMed]
  7. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal field of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
    [CrossRef]
  8. The solution for Gaussian-beam illumination uses the plane-wave spectrum approach and will be the subject of a future publication.
  9. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

1991 (2)

A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

G. Chen, W. P. Acker, R. K. Chang, S. C. Hill, “Fine structures in the stimulated Raman scattering from single droplets,” Opt. Lett. 16, 117–119 (1991).
[CrossRef] [PubMed]

1989 (2)

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal field of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

1988 (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

1987 (1)

1985 (1)

Acker, W. P.

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal field of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Armstrong, R. L.

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

Barber, P. W.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal field of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Biswas, A.

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

Campillo, A. J.

A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Chang, R. K.

Chen, G.

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

Ching, S. C.

Eversole, J. D.

A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Hill, S. C.

Lai, H. M.

Latifi, H.

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

Lin, H-B.

A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Pinnick, R. G.

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

Qian, S. X.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal field of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Snow, J. R.

Young, K.

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal field of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (2)

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[CrossRef] [PubMed]

Other (2)

The solution for Gaussian-beam illumination uses the plane-wave spectrum approach and will be the subject of a future publication.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Contribution of the TE58,1 MDR to the total electric energy inside the sphere as a function of number of linewidths N away from the resonance location for a plane wave and three different positions of a focused Gaussian beam. The beam focal-point position along the y axis is y0 and a is the sphere radius. The size parameter at resonance is 47.3094299 and the dimensionless linewidth Δx ≈ 0.66 × 10−4. The solid curve is for a plane wave and the dashed curves are for Gaussian beams. The half-width of the Gaussian beam, w0, is 0.2057a. The dotted curve is for the adjacent low-Q TM48,3 MDR at y0 = 1.5a.

Fig. 2
Fig. 2

(a) Contribution of the TE58,1 MDR to the total electric energy inside the sphere as a function of the incident Gaussian-beam focal-point position along the y-axis (y0). N is the number of linewidths from the TE58,1 resonance location. (b) Magnitude (maximum value normalized to 1) of the internal electric energy in the TE58,1 MDR as a function of the Gaussian-beam focal-point position. The frequency is N = 150 linewidths from the TE58,1 resonance.

Fig. 3
Fig. 3

(a) Surface and (b) contour plots of the electric-energy density distribution inside the sphere. The incident frequency is 75 linewidths away from the resonance location and y0 = a.

Fig. 4
Fig. 4

(a) Surface and (b) contour plots of the electric-energy density distribution inside the sphere. The incident frequency is 75 linewidths away from the resonance location and y0 = 1.5a. The maximum value of the energy density in this case is ~2.5 × 10−3 of that shown in Fig. 3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E i n t = n , m c e m n M e m n 1 + c o m n M o m n 1 + d e m n N e m n 1 d o m n N o m n 1 ,
[ c e m n | c o m n | d e m n | d o m n ] T = i [ A ] 1 [ a e m n | a o m n | b e m n | b o m n ] T ,
I n = D B ,
D = m | c e m n | 2 υ | M e m n 1 | 2 d υ + | c o m n | 2 υ | M o m n 1 | 2 d υ ,
B = m , n | c e m n | 2 υ | M e m n 1 | 2 d υ + | c o m n | 2 υ | M o m n 1 | 2 d υ + | d e m n | 2 υ | N e m n 1 | 2 d υ + | d o m n | 2 υ | N o m n 1 | 2 d υ ,
G = m | d e m n | 2 υ | N e m n 1 | 2 d υ + | d o m n | 2 υ | N o m n 1 | 2 d υ .

Metrics