Abstract

We introduce a three-dimensional sensor designed primarily for rough objects that supplies an accuracy that is limited only by the roughness of the object surface. This differs from conventional optical systems in which the depth accuracy is limited by the aperture. Consequently, our sensor supplies high accuracy with a small aperture, i.e., we can probe narrow crevices and holes. The sensor is based on a Michelson interferometer, with the rough object surface serving as one mirror. The small coherence length of the light source is used. While scanning the object in depth, one can detect the local occurrence of interference within the speckles emerging from the object. We call this method coherence radar.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
  2. G. Häusler, J. M. Herrmann, “3D-sensing with a confocal optical ‘macroscope’,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 359 (1990).
  3. G. Häusler, J. Hutfless, M. Maul, H. Weissmann, “Range sensing based on shearing interferometry,” Appl. Opt. 27, 4638–4644 (1988).
  4. G. Häusler, J. M. Herrmann, “Range sensing by shearing interferometry: influence of speckle,” Appl. Opt. 27, 4631–4637 (1988).
  5. G. Häusler, “About fundamental limits of three-dimensional sensing or nature makes no presents,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 352–353 (1990).
  6. I. Kaisto, J. Kostamovaara, M. Manninen, R. Myllyla, “Optical range finder for 1.5–10-m distances,” Appl. Opt. 22, 3258–3264 (1983).
  7. A. F. Fercher, H. Z. Hu, U. Vry, “Rough surface interferometry with a two-wavelength heterodyne speckle interferometer,” Appl. Opt. 24, 2181–2188 (1985).
  8. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816 (1987).
  9. Y. Y. Cheng, J. C. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
  10. A. A. Michelson, “Determination experimentale de la valeur du metre en longueurs d’ondes lumineuses,” Trav. Mem. Bur. Int. Poids Mes. 11, 1–42 (1895).
  11. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy; Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).
  12. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
  13. G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
  14. R. E. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, London, 1983).
  15. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.
  16. N. George, A. Jain, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202–1212 (1973).

1990

1988

1987

1985

1983

1973

1895

A. A. Michelson, “Determination experimentale de la valeur du metre en longueurs d’ondes lumineuses,” Trav. Mem. Bur. Int. Poids Mes. 11, 1–42 (1895).

Bickel, G.

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

Cheng, Y. Y.

Chim, S. S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy; Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Creath, K.

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy; Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Fercher, A. F.

George, N.

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.

Häusler, G.

G. Häusler, J. M. Herrmann, “Range sensing by shearing interferometry: influence of speckle,” Appl. Opt. 27, 4631–4637 (1988).

G. Häusler, J. Hutfless, M. Maul, H. Weissmann, “Range sensing based on shearing interferometry,” Appl. Opt. 27, 4638–4644 (1988).

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

G. Häusler, J. M. Herrmann, “3D-sensing with a confocal optical ‘macroscope’,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 359 (1990).

G. Häusler, “About fundamental limits of three-dimensional sensing or nature makes no presents,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 352–353 (1990).

Herrmann, J. M.

G. Häusler, J. M. Herrmann, “Range sensing by shearing interferometry: influence of speckle,” Appl. Opt. 27, 4631–4637 (1988).

G. Häusler, J. M. Herrmann, “3D-sensing with a confocal optical ‘macroscope’,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 359 (1990).

Hu, H. Z.

Hutfless, J.

Jain, A.

Jones, R. E.

R. E. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, London, 1983).

Kaisto, I.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy; Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Kino, G. S.

Kostamovaara, J.

Lee, B. S.

Manninen, M.

Maul, M.

G. Häusler, J. Hutfless, M. Maul, H. Weissmann, “Range sensing based on shearing interferometry,” Appl. Opt. 27, 4638–4644 (1988).

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy; Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Michelson, A. A.

A. A. Michelson, “Determination experimentale de la valeur du metre en longueurs d’ondes lumineuses,” Trav. Mem. Bur. Int. Poids Mes. 11, 1–42 (1895).

Myllyla, R.

Strand, T. C.

Vry, U.

Weissmann, H.

Wyant, J. C.

Wykes, C.

R. E. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, London, 1983).

Appl. Opt.

Opt. Eng.

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

Trav. Mem. Bur. Int. Poids Mes.

A. A. Michelson, “Determination experimentale de la valeur du metre en longueurs d’ondes lumineuses,” Trav. Mem. Bur. Int. Poids Mes. 11, 1–42 (1895).

Other

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy; Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

G. Häusler, J. M. Herrmann, “3D-sensing with a confocal optical ‘macroscope’,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 359 (1990).

G. Häusler, “About fundamental limits of three-dimensional sensing or nature makes no presents,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 352–353 (1990).

R. E. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, London, 1983).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic setup of coherent radar; P0 and P1, pixels.

Fig. 2
Fig. 2

Picture of the interferometer output: a rough object with a superimposed reference wave. The object is a tilted plane of vanadium steel. Interference occurs only where the object plane intersects the virtual reference plane R′.

Fig. 3
Fig. 3

Measured correlogram I(z): the output of the interferometer is measured while the considered object is moved along the z axis.

Fig. 4
Fig. 4

Visualization of correlograms I(z, x) of pixels with lateral location x.

Fig. 5
Fig. 5

Details of the experimental setup. PZT, piezoelectric transducer.

Fig. 6
Fig. 6

Rough aluminum plane with rms depth error δz = ±1.8 μm: (a) 3-D plot, (b) longitudinal section.

Fig. 7
Fig. 7

3-D plot of a milled slot. The depth is 90 μm, the width is approximately 1 mm, and the aperture is sin u = 1/80.

Fig. 8
Fig. 8

Bore hole: (a) complete object, (b) enlarged bottom section, (c) cross section.

Fig. 9
Fig. 9

A German 1-Pfennig copper coin (not polished) with a diameter of d ≈ 17 mm and a depth error of δz = 2 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ z = 1 . 22 λ sin 2 u o for focus sensing systems ,
δ z = 1 . 22 λ ( sin θ ) ( sin u o ) for triangulation systems ,
δ z λ 2 ( sin u i ) ( sin u o ) for shearing interferometry .
I ( z ) = I ¯ + A ( z ) cos [ 2 k ¯ z + φ ( z ) ] ,
A ( z p ) = [ i ( I i I ¯ ) 2 ] 1 / 2 ,
I ¯ = 1 3 i I i .
l c c / Δ ν 4 πσ z ,

Metrics