Abstract

High-sensitivity real-time remote detection of methane in air with a 1.66-μm distributed-feedback diode laser operating at room temperature is demonstrated by laboratory simulations. The laser current was modulated at a high frequency of ~5 MHz, and the laser-center frequency was locked onto a methane-absorption line. The laser light directed toward the probed region was received after one-way transmission or further reflection from a topographic target. The methane absorption was detected by the second-harmonic component in the optical-power variation. The minimum-detectable concentration–path-length product in the transmission scheme was 0.3 part in 106 m for a signal averaging time of 1.3 s. In the reflection scheme, the amount of methane could be measured from the ratio of the fundamental and second-harmonic signal intensities independently of the received power.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Moore, “Gas-laser frequency selection by molecular absorption,” Appl. Opt. 4, 252–253 (1965).
    [CrossRef]
  2. W. B. Grant, “He-Ne and CW CO2 laser long-path systems for gas detection,” Appl. Opt. 25, 709–719 (1986).
    [CrossRef] [PubMed]
  3. K. Uehara, “Alternate intensity modulation of a dual-wavelength He–Ne laser for differential absorption measurements,” Appl. Phys. B 38, 37–40 (1985).
    [CrossRef]
  4. M. Hamza, T. Kobayashi, H. Inaba, “Two-wavelengthand power-balanced oscillation of a CO2 laser for application to differential absorption measurements,” Opt. Quantum Electron. 14, 339–346 (1982).
    [CrossRef]
  5. G. T. Forrest, “Tunable diode laser measurement of methane, ethane, and water vapor in cigarette smoke,” Appl. Opt. 19, 2094–2096 (1980).
    [CrossRef] [PubMed]
  6. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185 (1982).
    [CrossRef] [PubMed]
  7. D. T. Cassidy, “Trace gas detection using 1.3-μm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
    [CrossRef] [PubMed]
  8. R. K. Defreez, R. A. Elliott, “External grating-tuned dual-diode-laser source for remote detection of coal gas methane,” J. Opt. Soc. Am. 73, 1854 (A) (1983).
  9. J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
    [CrossRef]
  10. R. Koga, M. Kosaka, H. Sano, “Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser,” Opt. Laser Technol. 139, Jun.1985.
  11. A. Mohebati, T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319–324 (1988).
    [CrossRef]
  12. K. Chan, H. Ito, H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11 (1985).
    [CrossRef]
  13. Y. Shimose, T. Okamoto, Research Laboratory, Anritsu Corporation, 1800 Onna, Atsugi, Kanagawa 243, Japan (personal communication).
  14. B. Bobin, “Interprétation de la bande harmonique 2υ3 du Méthane 12CH4(du 5890 à 6107 cm−1),” J. Phys. (Paris) 33, 345–352 (1972).
    [CrossRef]
  15. K. Uehara, “Signal recording and averaging in diode laser spectroscopy,” Opt. Lett. 12, 81–83 (1987).
    [CrossRef] [PubMed]
  16. V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
    [CrossRef]

1988

A. Mohebati, T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319–324 (1988).
[CrossRef]

D. T. Cassidy, “Trace gas detection using 1.3-μm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
[CrossRef] [PubMed]

1987

1986

1985

K. Chan, H. Ito, H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11 (1985).
[CrossRef]

K. Uehara, “Alternate intensity modulation of a dual-wavelength He–Ne laser for differential absorption measurements,” Appl. Phys. B 38, 37–40 (1985).
[CrossRef]

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
[CrossRef]

R. Koga, M. Kosaka, H. Sano, “Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser,” Opt. Laser Technol. 139, Jun.1985.

1983

R. K. Defreez, R. A. Elliott, “External grating-tuned dual-diode-laser source for remote detection of coal gas methane,” J. Opt. Soc. Am. 73, 1854 (A) (1983).

1982

M. Hamza, T. Kobayashi, H. Inaba, “Two-wavelengthand power-balanced oscillation of a CO2 laser for application to differential absorption measurements,” Opt. Quantum Electron. 14, 339–346 (1982).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185 (1982).
[CrossRef] [PubMed]

1980

1975

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

1972

B. Bobin, “Interprétation de la bande harmonique 2υ3 du Méthane 12CH4(du 5890 à 6107 cm−1),” J. Phys. (Paris) 33, 345–352 (1972).
[CrossRef]

1965

Balakin, V. A.

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

Bobin, B.

B. Bobin, “Interprétation de la bande harmonique 2υ3 du Méthane 12CH4(du 5890 à 6107 cm−1),” J. Phys. (Paris) 33, 345–352 (1972).
[CrossRef]

Cassidy, D. T.

Chan, K.

K. Chan, H. Ito, H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11 (1985).
[CrossRef]

Defreez, R. K.

R. K. Defreez, R. A. Elliott, “External grating-tuned dual-diode-laser source for remote detection of coal gas methane,” J. Opt. Soc. Am. 73, 1854 (A) (1983).

Elliott, R. A.

R. K. Defreez, R. A. Elliott, “External grating-tuned dual-diode-laser source for remote detection of coal gas methane,” J. Opt. Soc. Am. 73, 1854 (A) (1983).

Forrest, G. T.

Grant, W. B.

W. B. Grant, “He-Ne and CW CO2 laser long-path systems for gas detection,” Appl. Opt. 25, 709–719 (1986).
[CrossRef] [PubMed]

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
[CrossRef]

Hamza, M.

M. Hamza, T. Kobayashi, H. Inaba, “Two-wavelengthand power-balanced oscillation of a CO2 laser for application to differential absorption measurements,” Opt. Quantum Electron. 14, 339–346 (1982).
[CrossRef]

Inaba, H.

K. Chan, H. Ito, H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11 (1985).
[CrossRef]

M. Hamza, T. Kobayashi, H. Inaba, “Two-wavelengthand power-balanced oscillation of a CO2 laser for application to differential absorption measurements,” Opt. Quantum Electron. 14, 339–346 (1982).
[CrossRef]

Ito, H.

K. Chan, H. Ito, H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11 (1985).
[CrossRef]

Kanovalov, I. P.

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

King, T. A.

A. Mohebati, T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319–324 (1988).
[CrossRef]

Kobayashi, T.

M. Hamza, T. Kobayashi, H. Inaba, “Two-wavelengthand power-balanced oscillation of a CO2 laser for application to differential absorption measurements,” Opt. Quantum Electron. 14, 339–346 (1982).
[CrossRef]

Koga, R.

R. Koga, M. Kosaka, H. Sano, “Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser,” Opt. Laser Technol. 139, Jun.1985.

Kosaka, M.

R. Koga, M. Kosaka, H. Sano, “Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser,” Opt. Laser Technol. 139, Jun.1985.

Menzies, R. T.

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
[CrossRef]

Mohebati, A.

A. Mohebati, T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319–324 (1988).
[CrossRef]

Moore, C. B.

Ocheretyanyi, A. I.

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

Okamoto, T.

Y. Shimose, T. Okamoto, Research Laboratory, Anritsu Corporation, 1800 Onna, Atsugi, Kanagawa 243, Japan (personal communication).

Popov, A. I.

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

Protsenko, E. D.

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

Reid, J.

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185 (1982).
[CrossRef] [PubMed]

Sano, H.

R. Koga, M. Kosaka, H. Sano, “Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser,” Opt. Laser Technol. 139, Jun.1985.

Shimose, Y.

Y. Shimose, T. Okamoto, Research Laboratory, Anritsu Corporation, 1800 Onna, Atsugi, Kanagawa 243, Japan (personal communication).

Sinclair, R. L.

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
[CrossRef]

Uehara, K.

K. Uehara, “Signal recording and averaging in diode laser spectroscopy,” Opt. Lett. 12, 81–83 (1987).
[CrossRef] [PubMed]

K. Uehara, “Alternate intensity modulation of a dual-wavelength He–Ne laser for differential absorption measurements,” Appl. Phys. B 38, 37–40 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys. B

K. Chan, H. Ito, H. Inaba, “10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption,” Appl. Phys. B 38, 11 (1985).
[CrossRef]

K. Uehara, “Alternate intensity modulation of a dual-wavelength He–Ne laser for differential absorption measurements,” Appl. Phys. B 38, 37–40 (1985).
[CrossRef]

J. Mod. Opt.

A. Mohebati, T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319–324 (1988).
[CrossRef]

J. Opt. Soc. Am.

R. K. Defreez, R. A. Elliott, “External grating-tuned dual-diode-laser source for remote detection of coal gas methane,” J. Opt. Soc. Am. 73, 1854 (A) (1983).

J. Phys. (Paris)

B. Bobin, “Interprétation de la bande harmonique 2υ3 du Méthane 12CH4(du 5890 à 6107 cm−1),” J. Phys. (Paris) 33, 345–352 (1972).
[CrossRef]

Opt. Laser Technol.

R. Koga, M. Kosaka, H. Sano, “Field methane tracking with a portable and real-time open-gas monitor based on a cw-driven Pb-salt diode laser,” Opt. Laser Technol. 139, Jun.1985.

Opt. Lett.

Opt. Quantum Electron.

J. Reid, R. L. Sinclair, W. B. Grant, R. T. Menzies, “High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers,” Opt. Quantum Electron. 17, 31–39 (1985).
[CrossRef]

M. Hamza, T. Kobayashi, H. Inaba, “Two-wavelengthand power-balanced oscillation of a CO2 laser for application to differential absorption measurements,” Opt. Quantum Electron. 14, 339–346 (1982).
[CrossRef]

Sov. J. Quantum. Electron.

V. A. Balakin, I. P. Kanovalov, A. I. Ocheretyanyi, A. I. Popov, E. D. Protsenko, “Switching of the emission wavelength of a He–Ne Laser in the 3.39 μm region,” Sov. J. Quantum. Electron. 5, 230–231 (1975).
[CrossRef]

Other

Y. Shimose, T. Okamoto, Research Laboratory, Anritsu Corporation, 1800 Onna, Atsugi, Kanagawa 243, Japan (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of the experimental apparatus in two remote detection schemes: (a) a transmission scheme and (b) a reflection scheme. When the scattering target in (b) is replaced by a retroreflector, the scheme is considered to be a modified transmission scheme. Simulation experiments were performed by using an absorption cell (not shown) placed in front of the laser transmitter.

Fig. 2
Fig. 2

Absorption spectra of the Q branch of the 2ν3 band of methane at (a) a low pressure and (b) atmospheric pressure observed by a 1.66-μm DFB diode laser. The methane pressure is 4 Torr in both traces, but 1-atm air is added in (b). The absorption-cell length is 50 cm. Trace (b) was shifted upward to avoid overlapping.

Fig. 3
Fig. 3

Lock-in detected (a) f (fundamental) and (b) 2f (second-harmonic) signals of the Q-branch lines of the 2ν3 band of methane in 1-atm N2. The modulation frequency f is 5.35 MHz. Note that the background offset is much smaller in (b) than in (a). The methane concentration in the 50-cm-long absorption cell is 1%.

Fig. 4
Fig. 4

Schematic diagram of the laser transmitter (dashed line) and the modulator–controllor.

Fig. 5
Fig. 5

Lock-in detected 2f signal of 50-ppmm methane in the transmission scheme. The noise shown on the right-hand side is magnified five times. Note that no background shift is observed when the laser light is blocked. The signal averaging time is 1.3 s.

Fig. 6
Fig. 6

Lock-in detected 2f signal of 5000-ppmm methane in the reflection scheme. A wooden board was placed 5 m away as the scattering target. The signal averaging time is 1.3 s.

Fig. 7
Fig. 7

Lock-in detected (a) f and (b) 2f signals recorded simultaneously in the reflection scheme. The laser light was blocked at ① and unblocked at ②. At ③ 5000-ppmm methane was introduced. The reflected light was blocked stepwise from ④ to ⑦. Note that the magnitudes of the f and 2f signals are proportional to each other between ③ and ⑦.

Metrics