Abstract

Wavelength modulation spectroscopy (WMS) and one-tone and two-tone frequency modulation spectroscopy (FMS) are compared by measuring the minimum detectable absorbances achieved using a mid-IR lead-salt diode laser. The range of modulation and detection frequencies spans over 5 orders of magnitude. The best results, absorbances in the low-to-mid 10−7 range in a 1-Hz bandwidth, are obtained by using high-frequency WMS (10-MHz detection frequency) and are limited by detector thermal noise. This sensitivity can provide species detection limits well below 1 part per billion for molecules with moderate line strengths if multiple-pass cells are used. High-frequency WMS is also tested by measuring the absorbance due to tropospheric N2O at 1243.795 cm−1. WMS at frequencies <100 kHz is limited by laser excess (1/f) noise. Both of the FMS methods, which require modulating the laser at frequencies ≥150 MHz, give relatively poor results due to inefficient coupling of the modulation waveform to the laser current. The results obtained agree well with theory. We also discuss the sensitivity limitations due to interference fringes from unintentional étalons and the effectiveness of étalon reduction schemes.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
    [CrossRef]
  2. F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
    [CrossRef]
  3. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-extended-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
    [CrossRef] [PubMed]
  4. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
    [CrossRef]
  5. C. B. Carlisle, D. E. Cooper, H. Prier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  6. L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
    [CrossRef]
  7. E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
    [CrossRef] [PubMed]
  8. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
    [CrossRef]
  9. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  10. W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982).
    [CrossRef]
  11. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  12. D. E. Cooper, R. E. Warren, “Two-tone heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
    [CrossRef]
  13. E. A. Whittaker, C. M. Shum, H. Grebel, H. Lotem, “Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 5, 1253–1256 (1988).
    [CrossRef]
  14. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
    [CrossRef]
  15. G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985).
    [CrossRef] [PubMed]
  16. D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
    [CrossRef] [PubMed]
  17. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  18. G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963).
    [CrossRef]
  19. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  20. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
    [CrossRef] [PubMed]
  21. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett., 11, 575–577 (1983).
    [CrossRef]
  22. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
    [CrossRef]
  23. R. D. Hudson, Infrared Systems Engineering (Wiley-Interscience, New York, 1969), p. 309.
  24. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988); J. A. Silver, A. C. Stanton, U.S. Patent4,934,816 (19June1990).
    [CrossRef] [PubMed]
  25. J. A. Silver, A. C. Stanton, “Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode lasers,” Appl. Opt. 27, 4438–4444 (1988).
    [CrossRef] [PubMed]
  26. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  27. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  28. R. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef] [PubMed]
  29. J. B. McManus, P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29, 898–900 (1990).
    [CrossRef] [PubMed]
  30. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4095 (1987).
    [CrossRef] [PubMed]
  31. G. Guelachvili, K. N. Rao, eds., Handbook of Infrared Standards with Spectral Maps and Transition Assignments Between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.
  32. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
    [CrossRef] [PubMed]
  33. D. E. Cooper, C. B. Carlisle, “High-sensitivity FM spectroscopy with a lead-salt diode laser,” Opt. Lett. 13, 719–721 (1988).
    [CrossRef] [PubMed]
  34. W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986).
    [CrossRef]
  35. P. S. Connell, R. A. Perry, C. J. Howard, “Tunable diode laser measurement of nitrous oxide in air,” Geophys. Res. Lett. 7, 1093–1096 (1980).
    [CrossRef]
  36. J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987).
    [CrossRef] [PubMed]
  37. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
    [CrossRef]
  38. C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
    [CrossRef]
  39. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  40. C. R. Webster, “Stratospheric composition measurements of Earth and Titan using high-resolution tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 40, 239–248 (1988).
    [CrossRef]
  41. M. Lowenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
    [CrossRef]
  42. G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
    [CrossRef]
  43. F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
    [CrossRef]
  44. F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).
  45. J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
    [CrossRef]
  46. G. Schmidtke, W. Kohn, U. Klocke, M. Knothe, W. J. Riedel, H. Wolf, “Diode laser spectrometer for monitoring up to five atmospheric trace gases in unattended operation,” Appl. Opt. 28, 3665–3670 (1989).
    [CrossRef] [PubMed]
  47. G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
    [CrossRef]
  48. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  49. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
    [CrossRef]
  50. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef] [PubMed]

1992 (1)

1990 (2)

1989 (9)

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

G. Schmidtke, W. Kohn, U. Klocke, M. Knothe, W. J. Riedel, H. Wolf, “Diode laser spectrometer for monitoring up to five atmospheric trace gases in unattended operation,” Appl. Opt. 28, 3665–3670 (1989).
[CrossRef] [PubMed]

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

C. B. Carlisle, D. E. Cooper, H. Prier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
[CrossRef] [PubMed]

1988 (9)

D. E. Cooper, C. B. Carlisle, “High-sensitivity FM spectroscopy with a lead-salt diode laser,” Opt. Lett. 13, 719–721 (1988).
[CrossRef] [PubMed]

E. A. Whittaker, C. M. Shum, H. Grebel, H. Lotem, “Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 5, 1253–1256 (1988).
[CrossRef]

C. R. Webster, “Stratospheric composition measurements of Earth and Titan using high-resolution tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 40, 239–248 (1988).
[CrossRef]

M. Lowenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
[CrossRef]

F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988); J. A. Silver, A. C. Stanton, U.S. Patent4,934,816 (19June1990).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode lasers,” Appl. Opt. 27, 4438–4444 (1988).
[CrossRef] [PubMed]

A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
[CrossRef] [PubMed]

1987 (6)

D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4095 (1987).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987).
[CrossRef] [PubMed]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

D. E. Cooper, R. E. Warren, “Two-tone heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
[CrossRef]

1986 (3)

W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

1985 (3)

1984 (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
[CrossRef]

1983 (3)

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett., 11, 575–577 (1983).
[CrossRef]

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1982 (2)

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
[CrossRef]

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

1981 (2)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

R. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
[CrossRef] [PubMed]

1980 (2)

1977 (1)

E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
[CrossRef] [PubMed]

1965 (2)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
[CrossRef]

1964 (1)

1963 (1)

G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963).
[CrossRef]

Altmann, R.

Anlauf, K.

G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Ballik, E. A.

Barbe, A.

Baumgart, R.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Bräuchle, C.

Brown, L. R.

Bruce, D. M.

Butler, J. E.

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Camy-Peyret, C.

Carlisle, C.

G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985).
[CrossRef] [PubMed]

Carlisle, C. B.

Cassidy, D. T.

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-extended-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
[CrossRef]

Celii, F. G.

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Coffer, W. R.

W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986).
[CrossRef]

Connell, P. S.

P. S. Connell, R. A. Perry, C. J. Howard, “Tunable diode laser measurement of nitrous oxide in air,” Geophys. Res. Lett. 7, 1093–1096 (1980).
[CrossRef]

Connors, V. S.

W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986).
[CrossRef]

Cooper, D. E.

El-Sherbiny, M.

Flaud, J.-M.

Gallagher, T. F.

L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985).
[CrossRef] [PubMed]

D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef] [PubMed]

Gamache, R. R.

Garside, B. K.

Gehrtz, M.

Goldman, A.

Grebel, H.

Harris, G. W.

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

Hastie, D. R.

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

Hayward, J. E.

J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

Herriott, D. R.

Hill, G. F.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Howard, C. J.

P. S. Connell, R. A. Perry, C. J. Howard, “Tunable diode laser measurement of nitrous oxide in air,” Geophys. Res. Lett. 7, 1093–1096 (1980).
[CrossRef]

Hudson, R. D.

R. D. Hudson, Infrared Systems Engineering (Wiley-Interscience, New York, 1969), p. 309.

Husson, N.

Iguichi, T.

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

Janik, G.

G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985).
[CrossRef] [PubMed]

Janik, G. R.

Kebabian, P. L.

Klocke, U.

Knothe, M.

Kogelnik, H.

Kohn, W.

Kompfner, R.

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lenth, W.

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett., 11, 575–577 (1983).
[CrossRef]

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levine, J. S.

W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986).
[CrossRef]

Lotem, H.

Lowenstein, M.

M. Lowenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

Mackay, G. I.

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

May, R. D.

C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

Mayne, L. K.

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

McManus, J. B.

Moses, E. I.

E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
[CrossRef] [PubMed]

Nelson, H. H.

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Pehrsson, P. E.

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Perry, M. G.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Perry, R. A.

P. S. Connell, R. A. Perry, C. J. Howard, “Tunable diode laser measurement of nitrous oxide in air,” Geophys. Res. Lett. 7, 1093–1096 (1980).
[CrossRef]

Pickett, H. M.

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Poynter, R. L.

Prier, H.

C. B. Carlisle, D. E. Cooper, H. Prier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

Reid, J.

J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

Riedel, W. J.

Rinsland, C. P.

Riris, H.

L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

Rothman, L. S.

Sachse, G. W.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Schiff, H. I.

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

Schmidtke, G.

Schulte, H. J.

Shum, C. M.

Silver, J. A.

Slemr, F.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

Smith, M. A. H.

Stanton, A. C.

J. A. Silver, A. C. Stanton, “Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode lasers,” Appl. Opt. 27, 4438–4444 (1988).
[CrossRef] [PubMed]

A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988); J. A. Silver, A. C. Stanton, U.S. Patent4,934,816 (19June1990).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987).
[CrossRef] [PubMed]

Tang, C. L.

E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
[CrossRef] [PubMed]

Tate, D. A.

L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

Toth, R. A.

Wade, L. O.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Wang, H.-T.

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Wang, L. G.

L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

Warren, R. E.

Webster, C. R.

C. R. Webster, “Stratospheric composition measurements of Earth and Titan using high-resolution tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 40, 239–248 (1988).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
[CrossRef]

Weitkamp, C.

Werle, P.

Whittaker, E. A.

Wiebe, A.

G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
[CrossRef]

Wilson, G. V. H.

G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963).
[CrossRef]

Wolf, H.

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Adv. Laser Sci. IV (1)

F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).

Appl. Opt. (4)

J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, H. Prier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988); J. A. Silver, A. C. Stanton, U.S. Patent4,934,816 (19June1990).
[CrossRef] [PubMed]

Appl. Opt. (15)

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
[CrossRef]

D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
[CrossRef]

D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
[CrossRef]

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

R. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
[CrossRef] [PubMed]

D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef] [PubMed]

D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4095 (1987).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode lasers,” Appl. Opt. 27, 4438–4444 (1988).
[CrossRef] [PubMed]

A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
[CrossRef] [PubMed]

G. Schmidtke, W. Kohn, U. Klocke, M. Knothe, W. J. Riedel, H. Wolf, “Diode laser spectrometer for monitoring up to five atmospheric trace gases in unattended operation,” Appl. Opt. 28, 3665–3670 (1989).
[CrossRef] [PubMed]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-extended-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

J. B. McManus, P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29, 898–900 (1990).
[CrossRef] [PubMed]

J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

Appl. Phys. B (2)

J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Appl. Phys. B (2)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[CrossRef]

Atmos. Environ. (1)

G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988).
[CrossRef]

Geophys. Res. Lett. (1)

P. S. Connell, R. A. Perry, C. J. Howard, “Tunable diode laser measurement of nitrous oxide in air,” Geophys. Res. Lett. 7, 1093–1096 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
[CrossRef]

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Appl. Phys. (1)

G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963).
[CrossRef]

J. Atmos. Chem. (1)

G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

J. Geophys. Res. (4)

W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986).
[CrossRef]

F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Quant. Spectrosc. Radiat. Transfer (2)

C. R. Webster, “Stratospheric composition measurements of Earth and Titan using high-resolution tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 40, 239–248 (1988).
[CrossRef]

M. Lowenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

Opt. Commun. (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Opt. Lett. (1)

E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
[CrossRef] [PubMed]

Opt. Commun. (1)

W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982).
[CrossRef]

Opt. Lett. (3)

Other (2)

R. D. Hudson, Infrared Systems Engineering (Wiley-Interscience, New York, 1969), p. 309.

G. Guelachvili, K. N. Rao, eds., Handbook of Infrared Standards with Spectral Maps and Transition Assignments Between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the optical layout. The total path length is 2.8 m and the cell is 11 cm long. PZT’s are used to dither optical elements as part of an étalon reduction scheme.

Fig. 2
Fig. 2

Representative schematic diagrams of the electronics used for WMS and FMS. Filled arrows indicate circuits that are common to the lead-salt diode laser. Panel (a) is pertinent to experiments using a lock-in amplifier for demodulation frequencies ≤100 kHz and panel (b) is representative of experiments requiring demodulation frequencies >100 kHz.

Fig. 3
Fig. 3

Direct absorption spectrum of 4.9 Torr of N2O acquired using the lead-salt diode laser. Absorption peaks a, b, and c occur at 1243.702, 1243.743, and 1243.795 cm−1, respectively.

Fig. 4
Fig. 4

High-frequency WMS spectra acquired using 5-MHz modulation with detection at 10 MHz.

Fig. 5
Fig. 5

Minimum detectable absorbances (1-Hz bandwidth) measured as a function of detection frequency for a variety of WMS and FMS experiments. Measurements are reproducible to within a factor of 2.

Fig. 6
Fig. 6

Comparison of measured minimum detectable absorbance with the values calculated using the theory described in Ref. 17. The symbols are labeled according to detection method: ⓐ 500-Hz modulation, 2f detection; ⓑ 1 kHz, 1f; ⓒ 5 kHz, 2f; ⓓ 25 kHz, 4f; ⓔ 50 kHz, 2f; ⓕ 100 kHz, 1f; ⓖ − ⓗ are 5-MHz modulation, with 1f, 2f 4f and 6f detection, respectively; © 10 MHz, 1f; © 10 MHz, 1f; ©150 MHz, one-tone FM; ©345 and 355 MHz, two-tone FM. Vertical arrows indicate the expected performance for one-tone FMS and two-tone FMS if optimum laser modulation were possible.

Fig. 7
Fig. 7

Observed (■) and calculated line shapes as a function of reduced frequency for second harmonic detection with 5-MHz modulation. The solid curve in trace (a) is the best-fit line shape with β = 16.9 and M = 0. Trace (b) shows the sensitivity of the line shape to the parameter β, with β being increased by 10% (dotted curve) and reduced by 10% (solid curve). M is fixed at 0.

Fig. 8
Fig. 8

Observed (■) and calculated (—) Une shapes as a function of reduced frequency for two-tone FMS using modulation at 345 and 355 MHz with detection at 10 MHz.

Fig. 9
Fig. 9

Observed (■) and best-fit (—) line shapes as a function of reduced frequency for one-tone FM spectra at relative detection phases of 0°, 45°, and 90°.

Fig. 10
Fig. 10

Second harmonic wavelength modulation spectrum using 5-MHz modulation showing N2O in 10-Torr room air. This spectrum covers the same wavelength range as the direct absorbance scan in Fig. 3.

Tables (1)

Tables Icon

Table I Experiments Performed

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x ω ω 1 / 2 , x m ω m ω 1 / 2 .
x ( t ) = x 0 + m sin ( ω m t ) ,
E ( t ) = E 0 [ 1 + M sin ( ω m t + ψ ) ] exp [ i ω 0 t + i β sin ( ω m t ) ] ,
M = | I 0 I max | 2 I 0 ,
ω ( t ) = ω 0 + βω m cos ( ω m t ) .
m = β x m .
I RAM ( one-tone ) = 2 I 0 R ( M ) = { 2 M I 0 sin ( θ + ψ ) n = 1 1 2 M 2 I 0 cos ( θ + 2 ψ + π ) n = 2 0 n > 2 , I RAM two-tone = 2 I 0 R ( M ) = 2 M 2 I 0 cos ( θ ) ,
SNR = i s ( t ) 2 ¯ i sn 2 ¯ + i th 2 ¯ + i RAM 2 ¯ + i ex 2 ¯ ,
SNR = ( e η h ν 0 ) 2 2 P 0 2 | Q ( α, φ ) | 2 2 e Δ f [ ( e η h ν 0 ) P 0 ( 1 + M 2 2 ) N + 2 k T eff e R L ] + ( e η h ν 0 ) 2 [ 2 R 2 ( M ) σ P 2 + Δ f f b σ ex 2 ] .

Metrics