Abstract

An optical radiation source has been developed by coupling a dye laser to a small integrating sphere with an optical fiber. The radiant power from this source, which is monochromatic and spectrally tunable, has been stabilized to ±0.02%. Nonuniformities in the emitted optical radiation field caused by speckle have been overcome by vibrating the fiber at ultrasonic frequencies. The source has been successfully used in a spectrophotometer to measure the transmittance of a large lens with an uncertainty of ±0.01%, and the spectral responsivity of a filter radiometer with an uncertainty of ±0.04%.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
    [CrossRef]
  2. A. R. Schaefer, N. P. Fox, “Tunable dye laser spectrometry,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 325–343.
    [CrossRef]
  3. J. B. Fowler, M. A. Lind, E. F. Zalewski, “A servo controlled electro-optic modulator for CW laser power stabilization and control,” Natl. Bur. Stand. (U.S.) Tech. Note 987 (U.S. GPO, Washington, D.C., 1979).
  4. A. R. Schaefer, K. L. Eckerle, “Spectrophotometric tests using a dye-laser-based radiometric characterization facility,” Appl. Opt. 23, 250–256 (1984).
    [CrossRef] [PubMed]
  5. D. J. Pugh, K. Jackson, “Automatic gauge block measurement using multiple wavelength interferometry,” in Contemporary Optical Instrument Design, Fabrication, and Testing, L. H. J. F. Beckmann, J. D. Briers, P. R. Yoder, eds., Proc. Soc. Photo-Opt. Instrum. Eng.656, 244–250 (1986).
  6. K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
    [CrossRef]
  7. G. H. C. Freeman, “The new automated reference spectrophotometer at NPL,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 69–86.
    [CrossRef]
  8. N. P. Fox, “Trap detectors and their properties,” Metrologia 28(3), 197–202 (1991).
    [CrossRef]
  9. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  10. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  11. N. P. Fox, P. J. Key, F. Riehle, B. Wende, “Intercomparison between two independent primary radiometric standards in the visible and near infrared: a cryogenic radiometer and the electron storage ring BESSY,” Appl. Opt. 25, 2409–2420 (1986).
    [CrossRef] [PubMed]
  12. J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurement,” Metrologia 21, 147–155 (1985).
    [CrossRef]
  13. J. C. Geist, H. P. Baltes, “High accuracy modeling of photodiode quantum efficiency,” Appl. Opt. 28, 3929–3939 (1989).
    [CrossRef] [PubMed]
  14. N. P. Fox, J. E. Martin, “Intercomparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
    [CrossRef] [PubMed]
  15. T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

1991 (1)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28(3), 197–202 (1991).
[CrossRef]

1990 (2)

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

N. P. Fox, J. E. Martin, “Intercomparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
[CrossRef] [PubMed]

1989 (2)

J. C. Geist, H. P. Baltes, “High accuracy modeling of photodiode quantum efficiency,” Appl. Opt. 28, 3929–3939 (1989).
[CrossRef] [PubMed]

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

1986 (1)

1985 (1)

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurement,” Metrologia 21, 147–155 (1985).
[CrossRef]

1984 (1)

1983 (1)

1975 (1)

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

1965 (1)

Baltes, H. P.

Corrons, A.

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

Duda, C. R.

Eckerle, K. L.

Fowler, J. B.

J. B. Fowler, M. A. Lind, E. F. Zalewski, “A servo controlled electro-optic modulator for CW laser power stabilization and control,” Natl. Bur. Stand. (U.S.) Tech. Note 987 (U.S. GPO, Washington, D.C., 1979).

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28(3), 197–202 (1991).
[CrossRef]

N. P. Fox, J. E. Martin, “Intercomparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
[CrossRef] [PubMed]

N. P. Fox, P. J. Key, F. Riehle, B. Wende, “Intercomparison between two independent primary radiometric standards in the visible and near infrared: a cryogenic radiometer and the electron storage ring BESSY,” Appl. Opt. 25, 2409–2420 (1986).
[CrossRef] [PubMed]

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurement,” Metrologia 21, 147–155 (1985).
[CrossRef]

A. R. Schaefer, N. P. Fox, “Tunable dye laser spectrometry,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 325–343.
[CrossRef]

Freeman, G. H. C.

G. H. C. Freeman, “The new automated reference spectrophotometer at NPL,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 69–86.
[CrossRef]

Geist, J.

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

Geist, J. C.

Goodman, T. M.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

Jackson, K.

D. J. Pugh, K. Jackson, “Automatic gauge block measurement using multiple wavelength interferometry,” in Contemporary Optical Instrument Design, Fabrication, and Testing, L. H. J. F. Beckmann, J. D. Briers, P. R. Yoder, eds., Proc. Soc. Photo-Opt. Instrum. Eng.656, 244–250 (1986).

Key, P. J.

Lind, M. A.

J. B. Fowler, M. A. Lind, E. F. Zalewski, “A servo controlled electro-optic modulator for CW laser power stabilization and control,” Natl. Bur. Stand. (U.S.) Tech. Note 987 (U.S. GPO, Washington, D.C., 1979).

Malitson, I. H.

Martin, J. E.

N. P. Fox, J. E. Martin, “Intercomparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990).
[CrossRef] [PubMed]

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurement,” Metrologia 21, 147–155 (1985).
[CrossRef]

Mielenz, K. D.

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Pugh, D. J.

D. J. Pugh, K. Jackson, “Automatic gauge block measurement using multiple wavelength interferometry,” in Contemporary Optical Instrument Design, Fabrication, and Testing, L. H. J. F. Beckmann, J. D. Briers, P. R. Yoder, eds., Proc. Soc. Photo-Opt. Instrum. Eng.656, 244–250 (1986).

Riehle, F.

Saunders, R. D.

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Schaefer, A. R.

A. R. Schaefer, K. L. Eckerle, “Spectrophotometric tests using a dye-laser-based radiometric characterization facility,” Appl. Opt. 23, 250–256 (1984).
[CrossRef] [PubMed]

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

A. R. Schaefer, N. P. Fox, “Tunable dye laser spectrometry,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 325–343.
[CrossRef]

Shipp, B. D.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

Shumaker, J. B.

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Steiner, B.

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

Turner, N. P.

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

Wende, B.

Zalewski, E. F.

E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
[CrossRef] [PubMed]

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

J. B. Fowler, M. A. Lind, E. F. Zalewski, “A servo controlled electro-optic modulator for CW laser power stabilization and control,” Natl. Bur. Stand. (U.S.) Tech. Note 987 (U.S. GPO, Washington, D.C., 1979).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. Geist, B. Steiner, A. R. Schaefer, E. F. Zalewski, A. Corrons, “Electrically based spectral power measurements through use of a tunable CW laser,” Appl. Phys. Lett. 26, 309–311 (1975).
[CrossRef]

Inst. Phys. Conf. Ser. (1)

T. M. Goodman, J. E. Martin, B. D. Shipp, N. P. Turner, “The manufacture and measurement of precision apertures,” Inst. Phys. Conf. Ser. 92, 121–128 (1989).

J. Opt. Soc. Am. (1)

J. Res. Natl. Inst. Stand. Technol. (1)

K. D. Mielenz, R. D. Saunders, J. B. Shumaker, “Spectroradiometric determination of the freezing temperature of gold,” J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990).
[CrossRef]

Metrologia (2)

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurement,” Metrologia 21, 147–155 (1985).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28(3), 197–202 (1991).
[CrossRef]

Other (4)

G. H. C. Freeman, “The new automated reference spectrophotometer at NPL,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 69–86.
[CrossRef]

A. R. Schaefer, N. P. Fox, “Tunable dye laser spectrometry,” in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz, eds. (Elsevier, Amsterdam, 1987), Vol. 2, pp. 325–343.
[CrossRef]

J. B. Fowler, M. A. Lind, E. F. Zalewski, “A servo controlled electro-optic modulator for CW laser power stabilization and control,” Natl. Bur. Stand. (U.S.) Tech. Note 987 (U.S. GPO, Washington, D.C., 1979).

D. J. Pugh, K. Jackson, “Automatic gauge block measurement using multiple wavelength interferometry,” in Contemporary Optical Instrument Design, Fabrication, and Testing, L. H. J. F. Beckmann, J. D. Briers, P. R. Yoder, eds., Proc. Soc. Photo-Opt. Instrum. Eng.656, 244–250 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Integrating sphere source.

Fig. 2
Fig. 2

Uniformity of the radiance of the near field of the integrating sphere source.

Fig. 3
Fig. 3

Uniformity of the irradiance in the far field of the integrating sphere source with and without correction for the cosine to the forth-power variation expected for a perfect Lambertian source.

Fig. 4
Fig. 4

Radiance stability of the integrating sphere source.

Fig. 5
Fig. 5

Spectrophotometer that was used to measure the transmittance of a lens.

Fig. 6
Fig. 6

Schematic two-dimensional representation of a trap detector. Incident radiation, Iin, undergoes five reflections within the trap detector so that the total radiation reflected from the detector, Iout, is reduced from that of a single photodiode by its reflectance to the fifth power.

Fig. 7
Fig. 7

Filter radiometer.

Fig. 8
Fig. 8

Spectrophotometer that was used to characterize filter radiometers.

Fig. 9
Fig. 9

Spectral responsivity of a filter radiometer recorded by using the integrating sphere source.

Tables (1)

Tables Icon

Table I Lens Transmittance Results

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I r = I s × D 2 × ρ 2 / ( 150 × d 2 ) ,
I r < I s × 2 × 10 7 .
I b = I s × D 2 × ρ / ( 100 × d 2 ) ,
( n n a ) 2 ( n + n a ) 2 ,

Metrics