Abstract

Telescopes that are designed for the unconventional imaging of near-Earth satellites must follow unique design rules. The costs must be reduced substantially over those of the conventional telescope designs, and the design must accommodate a technique to circumvent atmospheric distortion of the image. Apertures of 12 m and more along with altitude–altitude mounts that provide high tracking rates are required. A novel design for such a telescope, optimized for speckle imaging, has been generated. Its mount closely resembles a radar mount, and it does not use the conventional dome. Costs for this design are projected to be considerably lower than those for the conventional designs. Results of a design study are presented with details of the electro-optical and optical designs.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).
  2. N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).
  3. T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).
  4. F. Roddier, “Interferometric imaging in optical astronomy,” Phys. Rep. 170, 97–166 (1988).
    [CrossRef]
  5. M. G. Miller, “Noise considerations in stellar speckle interferometry,” J. Opt. Soc. Am. 67, 1176–1184 (1977).
    [CrossRef]
  6. J. Beletic, “Speckle imaging of complicated objects,” Ph.D. dissertation (Harvard University, Cambridge, Massachusetts, 1989).
  7. R. A. Bredthauer, Ford Aerospace, Newport Beach, Calif. 92658 (personal communication).
  8. G. Sims, Photometrics Ltd., Tucson, Ariz. 85706 (personal communication).
  9. G. Sims, F. Griffin, M. P. Lesser, “Silicon CCD optimized for near infrared (NIR) wavelengths,” in New Methods in Microscopy and Low Light Imaging, J. E. Wampler, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1161, 55–60 (1989).
  10. L. D. Weaver, J. S. Fender, C. R. DeHainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
    [CrossRef]
  11. M. J. E. Golay, “Point arrays having compact, nonredundant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971).
    [CrossRef]
  12. J. E. Harvey, R. A. Rockwell, “Performance characteristics of phased array and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
    [CrossRef]
  13. J. C. Dainty, Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics (Springer, New York, 1984).
  14. D. P. Karo, A. M. Schneiderman, “Speckle interferometry at finite spectral bandwidths and exposure times,” J. Opt. Soc. Am. 68, 480–485 (1978).
    [CrossRef]
  15. J. Ohtsubo, “Effects of finite spectral bandwidth and focusing error on the transfer function in stellar speckle interferometry,” J. Opt. Soc. Am. A 2, 667–673 (1985).
    [CrossRef]
  16. C. G. Wyne, “Extending the bandwidth of speckle interferometry,” Opt. Commun. 28, 21–25 (1979).
    [CrossRef]
  17. D. L. Fried, D. T. Sherwood, White Light Speckle Approach to Satellite Imagery: Expanding and Assessing the Available Body of Knowledge, Publ. BC-491 (Optical Sciences Company, Placentia, Calif., 1988).
  18. D. L. Fried, D. R. Sherwood, White Light Speckle: A Comparison of Some Aspects of Theory and Experiment, Publ. BC-511 (Optical Sciences Company, Placentia, Calif., 1989).

1990 (1)

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

1988 (3)

F. Roddier, “Interferometric imaging in optical astronomy,” Phys. Rep. 170, 97–166 (1988).
[CrossRef]

L. D. Weaver, J. S. Fender, C. R. DeHainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phased array and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

1985 (1)

1979 (1)

C. G. Wyne, “Extending the bandwidth of speckle interferometry,” Opt. Commun. 28, 21–25 (1979).
[CrossRef]

1978 (1)

1977 (1)

1971 (1)

Beletic, J.

J. Beletic, “Speckle imaging of complicated objects,” Ph.D. dissertation (Harvard University, Cambridge, Massachusetts, 1989).

Bredthauer, R. A.

R. A. Bredthauer, Ford Aerospace, Newport Beach, Calif. 92658 (personal communication).

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics (Springer, New York, 1984).

DeHainaut, C. R.

L. D. Weaver, J. S. Fender, C. R. DeHainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Fender, J. S.

L. D. Weaver, J. S. Fender, C. R. DeHainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Fitch, J. P.

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

Fitch, P.

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

Fried, D. L.

D. L. Fried, D. T. Sherwood, White Light Speckle Approach to Satellite Imagery: Expanding and Assessing the Available Body of Knowledge, Publ. BC-491 (Optical Sciences Company, Placentia, Calif., 1988).

D. L. Fried, D. R. Sherwood, White Light Speckle: A Comparison of Some Aspects of Theory and Experiment, Publ. BC-511 (Optical Sciences Company, Placentia, Calif., 1989).

Golay, M. J. E.

Goodman, D. M.

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

Griffin, F.

G. Sims, F. Griffin, M. P. Lesser, “Silicon CCD optimized for near infrared (NIR) wavelengths,” in New Methods in Microscopy and Low Light Imaging, J. E. Wampler, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1161, 55–60 (1989).

Harvey, J. E.

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phased array and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

Johansson, E. M.

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

Karo, D. P.

Lawrence, T.

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

Lawrence, T. W.

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

Lesser, M. P.

G. Sims, F. Griffin, M. P. Lesser, “Silicon CCD optimized for near infrared (NIR) wavelengths,” in New Methods in Microscopy and Low Light Imaging, J. E. Wampler, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1161, 55–60 (1989).

Massie, N. A.

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).

Miller, M. G.

Ohtsubo, J.

Oster, Y.

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).

Poe, G.

N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).

Rockwell, R. A.

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phased array and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

Roddier, F.

F. Roddier, “Interferometric imaging in optical astronomy,” Phys. Rep. 170, 97–166 (1988).
[CrossRef]

Schneiderman, A. M.

Seppala, L.

N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).

Shao, M.

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).

Sherwood, D. R.

D. L. Fried, D. R. Sherwood, White Light Speckle: A Comparison of Some Aspects of Theory and Experiment, Publ. BC-511 (Optical Sciences Company, Placentia, Calif., 1989).

Sherwood, D. T.

D. L. Fried, D. T. Sherwood, White Light Speckle Approach to Satellite Imagery: Expanding and Assessing the Available Body of Knowledge, Publ. BC-491 (Optical Sciences Company, Placentia, Calif., 1988).

Sherwood, R. J.

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

Sims, G.

G. Sims, Photometrics Ltd., Tucson, Ariz. 85706 (personal communication).

G. Sims, F. Griffin, M. P. Lesser, “Silicon CCD optimized for near infrared (NIR) wavelengths,” in New Methods in Microscopy and Low Light Imaging, J. E. Wampler, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1161, 55–60 (1989).

Weaver, L. D.

L. D. Weaver, J. S. Fender, C. R. DeHainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Wyne, C. G.

C. G. Wyne, “Extending the bandwidth of speckle interferometry,” Opt. Commun. 28, 21–25 (1979).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Lasers Optron. (1)

N. A. Massie, T. Lawrence, M. Shao, P. Fitch, Y. Oster, “Stalking satellites in high resolution,” Lasers Optron. 9, 45–50 (1990).

Opt. Commun. (1)

C. G. Wyne, “Extending the bandwidth of speckle interferometry,” Opt. Commun. 28, 21–25 (1979).
[CrossRef]

Opt. Eng. (2)

J. E. Harvey, R. A. Rockwell, “Performance characteristics of phased array and thinned aperture optical telescopes,” Opt. Eng. 27, 762–768 (1988).
[CrossRef]

L. D. Weaver, J. S. Fender, C. R. DeHainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
[CrossRef]

Phys. Rep. (1)

F. Roddier, “Interferometric imaging in optical astronomy,” Phys. Rep. 170, 97–166 (1988).
[CrossRef]

Other (9)

N. A. Massie, Y. Oster, G. Poe, L. Seppala, M. Shao, “Low-cost high-resolution telescopes for imaging low-Earth orbit satellites,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 313–329 (1990).

T. W. Lawrence, J. P. Fitch, D. M. Goodman, E. M. Johansson, N. A. Massie, R. J. Sherwood, “Experimental validation of extended image reconstruction using the bispectrum,” in Astronomical Telescopes and Instrumentation for the 21st Century, J. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 522–537 (1990).

J. Beletic, “Speckle imaging of complicated objects,” Ph.D. dissertation (Harvard University, Cambridge, Massachusetts, 1989).

R. A. Bredthauer, Ford Aerospace, Newport Beach, Calif. 92658 (personal communication).

G. Sims, Photometrics Ltd., Tucson, Ariz. 85706 (personal communication).

G. Sims, F. Griffin, M. P. Lesser, “Silicon CCD optimized for near infrared (NIR) wavelengths,” in New Methods in Microscopy and Low Light Imaging, J. E. Wampler, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1161, 55–60 (1989).

J. C. Dainty, Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics (Springer, New York, 1984).

D. L. Fried, D. T. Sherwood, White Light Speckle Approach to Satellite Imagery: Expanding and Assessing the Available Body of Knowledge, Publ. BC-491 (Optical Sciences Company, Placentia, Calif., 1988).

D. L. Fried, D. R. Sherwood, White Light Speckle: A Comparison of Some Aspects of Theory and Experiment, Publ. BC-511 (Optical Sciences Company, Placentia, Calif., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Plot of quantum efficiency versus wavelength. Previous technology is compared with various stages of enhancements that were designed to improve the red response.

Fig. 2
Fig. 2

Images from a filled and a thinned aperture are compared. The experimental images were reconstructed by using the bispectrum.

Fig. 3
Fig. 3

A MST could be constructed over a large effective aperture by using the ground as an inertial platform and by placing the dynamic and static delay lines underground.

Fig. 4
Fig. 4

A single telescope for the MST array in a configuration that would permit observation of most of the sky.

Fig. 5
Fig. 5

OS that is generic for all array telescopes. All multiple-telescope concepts must use an optical system similar to the one shown here, with the important difference that, with speckle interferometry, the path-length and the pupil-matching requirements are considerably reduced compared with a phased telescope.

Fig. 6
Fig. 6

New mount design for a SST. The concept for a radarlike mount is shown in this Golay 12 configuration. The telescope pivots about a central ball and is steered by cables providing differential forces. Alt–alt tracking is therefore provided.

Fig. 7
Fig. 7

Details of the space frame are shown for the 12-m effective-aperture array.

Fig. 8
Fig. 8

Photograph of a scale model of the 12-m effective-aperture array.

Fig. 9
Fig. 9

SST first mechanical resonance. A finite element model predicts that the lowest resonance is at 10.7 Hz.

Fig. 10
Fig. 10

Schematic of a SST OS and EOS. The OS and path-length-control interferometers are shown.

Fig. 11
Fig. 11

Schematic of the OS with the subaperture telescope (M1 and M2), beam-transport mirrors (M3 and M4), the beam-recombining telescope (M5, M6, and M8), and a folding mirror (M7).

Fig. 12
Fig. 12

Schematic showing the operation of the EOS: (a) Michelson interferometer, (b) Michelson interferometer with a single path-length-measuring interferometer, (c) Michelson interferometer with sufficient interferometric measurement for complete path-length determination, (d) Michelson interferometer converted to an image plane interferometer with contiguous inner-core coverage of the MTF.

Tables (2)

Tables Icon

Table I Parameters of the Proposed Telescope and Other Telescopes

Tables Icon

Table II Error Budget for the Path-Length Control System

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S / N = M 1 + 2 / η s k ,
M = 4 ( S / N ) 2 η s k 2
M = ( S / N ) 2 .
B = ( F λ R cos ( θ ) π ) ,
G = ( Π 4 D 2 Z 2 ) ,
A = ( 1 . 2 λ Z D ) ,
ξ = ( τ Δ λ E ηλ h c ) ,
N = 2 . 3 ( D r 0 ) 2 ,
η s k = [ F λ R cos ( θ ) π ] ( π 4 D 2 Z 2 ) ( τ Δ λ E ηλ h c ) ( 1 . 2 λ Z D ) 2 [ 1 2 . 3 ( D / r 0 ) 2 ] .
Δ λ = 1 . 4 λ r 1 β D , r 0 = r 1 β, F λ F 0 λ , τ = 0 . 001 ( H 3 × 10 5 ) ( r 1 0 . 1 ) β,
β = ( λ λ 1 ) 1 . 2
η s k αλ 7 . 8 r 1 4 .

Metrics