Abstract

An ellipsoidal holographic grating that is recorded with aberrated wave fronts can achieve a 3 × 104 resolution power of around 1000 Å. We propose an alternative solution by using a spherical blank.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Grange, M. Laget, “Holographic diffraction gratings generated by aberrated wave fronts: application to a high-resolution far-ultraviolet spectrograph,” Appl. Opt. 30, 3598–3603 (1991).
    [CrossRef] [PubMed]
  2. W. C. Cash, “Aspheric concave grating spectrographs,” Appl. Opt. 23, 4518–4522 (1984).
    [CrossRef] [PubMed]
  3. C. Palmer, “Theory of second-generation holographic diffraction gratings,” J. Opt. Soc. Am. A 6, 1175–1188 (1989).
    [CrossRef]
  4. H. Noda, Y. Harada, M. Koike, “Holographic grating recorded using aspheric wavefronts for a Seya-Namioka monochromator,” Appl. Opt. 28, 4375–4380 (1989).
    [CrossRef] [PubMed]
  5. M. Duban, “Holographic aspheric gratings printed with aberrant waves,” Appl. Opt. 26, 4263–4273 (1987).
    [CrossRef] [PubMed]
  6. M. Duban, “Les réseaux holographiques asphériques enregistrés avec des ondes laser aberrantes: un outil efficace pour la haute résolution spectrale,” J. Opt. 20(6), 269–279 (1989).
    [CrossRef]
  7. M. Duban, “Third generation Rowland holographie mounting,” Appl. Opt. (to be published).

1991

1989

1987

1984

Cash, W. C.

Duban, M.

M. Duban, “Les réseaux holographiques asphériques enregistrés avec des ondes laser aberrantes: un outil efficace pour la haute résolution spectrale,” J. Opt. 20(6), 269–279 (1989).
[CrossRef]

M. Duban, “Holographic aspheric gratings printed with aberrant waves,” Appl. Opt. 26, 4263–4273 (1987).
[CrossRef] [PubMed]

M. Duban, “Third generation Rowland holographie mounting,” Appl. Opt. (to be published).

Grange, R.

Harada, Y.

Koike, M.

Laget, M.

Noda, H.

Palmer, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spot diagrams from Ref. 1 of 5764-groove/mm ellipsoidal gratings: (a) ruled Cash ellipsoid; (b) recorded with a theoretical 1940-Å laser; (c) recorded with an available 3336-Å laser by using two spherical mirrors.

Fig. 2
Fig. 2

(a), (b), (c) Spot diagrams that we obtained for the 5764-groove/mm ellipsoidal gratings of Fig. 1. (d) The laser sources in (c) are shifted by 0.1 mm.

Fig. 3
Fig. 3

Spot diagrams obtained when the spherical gratings use an aberrated laser source: (a) 5764 grooves/mm, λ0 = 2500 Å; (b) 4600 grooves/mm, λ0 = 3336 Å; (c) 4320 grooves/mm, λ0 = 3336 Å.

Tables (1)

Tables Icon

Table I Parameters of Three Spherical Holographic Gratings

Metrics