Abstract

We describe a modification to an optical technique to calibrate the caυity spacing of a Fabry–Perot interferometer.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Herbst, S. Beckwith, “Active stabilization system for Fabry–Perot interferometers,” Appl. Opt. 28, 5275–5277 (1989) (Paper 1).
    [CrossRef]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, p. 330.
  3. T. M. Herbst, S. Beckwith, “A new Fabry–Perot interferometer system for infrared astronomy,” Publ. Astron. Soc. Pac. 100, 635–640 (1988).
    [CrossRef]

1989 (1)

1988 (1)

T. M. Herbst, S. Beckwith, “A new Fabry–Perot interferometer system for infrared astronomy,” Publ. Astron. Soc. Pac. 100, 635–640 (1988).
[CrossRef]

Beckwith, S.

T. M. Herbst, S. Beckwith, “Active stabilization system for Fabry–Perot interferometers,” Appl. Opt. 28, 5275–5277 (1989) (Paper 1).
[CrossRef]

T. M. Herbst, S. Beckwith, “A new Fabry–Perot interferometer system for infrared astronomy,” Publ. Astron. Soc. Pac. 100, 635–640 (1988).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, p. 330.

Herbst, T. M.

T. M. Herbst, S. Beckwith, “Active stabilization system for Fabry–Perot interferometers,” Appl. Opt. 28, 5275–5277 (1989) (Paper 1).
[CrossRef]

T. M. Herbst, S. Beckwith, “A new Fabry–Perot interferometer system for infrared astronomy,” Publ. Astron. Soc. Pac. 100, 635–640 (1988).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, p. 330.

Appl. Opt. (1)

Publ. Astron. Soc. Pac. (1)

T. M. Herbst, S. Beckwith, “A new Fabry–Perot interferometer system for infrared astronomy,” Publ. Astron. Soc. Pac. 100, 635–640 (1988).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, p. 330.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the optical layout. The laser is at A, and the PSD’s are at D, which is a distance x off axis. The rays that pass through the FP traverse the cavity 2m + 1 times, where m is an integer. Adding all such rays with appropriate amplitudes and phases gives the irradiance at the detectors.

Fig. 2
Fig. 2

Numerical simulation of laser fringes at the location of the PSD’s. These plots show the irradiance as a function of cavity spacing off axis (top) and on axis (bottom) and demonstrate the increase in the effective laser wavelength for x ≠ 0. The calculations also naturally produce the secondary fringes noted in Paper 1.

Tables (1)

Tables Icon

Table I Laboratory Experiment Resultsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A = A 0 r 2 m , ϕ ( m ) = 2 π λ ( x 2 + Q 2 ) 1 / 2 ,
Q L 1 + L 2 + ( 2 m + 1 ) d .
E ( x ) = m = 0 A 0 r 2 m exp [ i ϕ ( m ) ] .
I ( x ) E ( x ) E * ( x ) .
ϕ ( m ) ϕ 0 + 2 π γ [ η ( 2 m + 1 ) d ] ,
I 1 1 2 R cos λ + R 2 ,
λ eff λ η = λ [ x 2 + ( L 1 + L 2 ) 2 ] 1 / 2 L 1 + L 2 .

Metrics