Abstract

We present a new design for an all-reflection Michelson interferometer that uses a concave spherical grating in an off-plane Rowland circle configuration.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, L. W. Anderson, F. L. Roesler, “All-reflection interferometer for use as a Fourier-transform spectrometer,” J. Opt. Soc. Am. 62, 938–945 (1972).
    [Crossref]
  2. R. A. Kruger, L. W. Anderson, F. L. Roesler, “New Fourier transform all-reflection interferometer,” Appl. Opt. 12, 533–540 (1973).
    [Crossref] [PubMed]
  3. B. Chang, R. Alferness, E. N. Leith, “Space-invariant achromatic grating interferometers: theory,” Appl. Opt. 14, 1592–1600 (1975).
    [Crossref] [PubMed]
  4. R. J. Fonck, D. A. Huppler, F. L. Roesler, D. H. Tracy, M. Daehler, “All-reflection Michelson interferometer: analysis and test for far IR Fourier spectroscopy,” Appl. Opt. 17, 1739–1747 (1978).
    [Crossref] [PubMed]
  5. Y. Cheng, “Fringe formation in incoherent light with a two-grating interferometer,” Appl. Opt. 23, 3057–3059 (1984).
    [Crossref] [PubMed]
  6. J. Wu, L. Chen, Y. Jiang, “Imaging 2-D objects with a grating interferometer: two methods,” Appl. Opt. 29, 1225–1229 (1990).
    [Crossref] [PubMed]
  7. J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” Tech. Rep. 15, Earth and Planetary Atmospheres Group (University of California, Berkeley, Berkeley, Calif., 1990).
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1984), p. 403.

1990 (1)

1984 (1)

1978 (1)

1975 (1)

1973 (1)

1972 (1)

Alferness, R.

Anderson, L. W.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1984), p. 403.

Chakrabarti, S.

J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” Tech. Rep. 15, Earth and Planetary Atmospheres Group (University of California, Berkeley, Berkeley, Calif., 1990).

Chang, B.

Chen, L.

Cheng, Y.

Daehler, M.

Fonck, R. J.

Harlander, J.

J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” Tech. Rep. 15, Earth and Planetary Atmospheres Group (University of California, Berkeley, Berkeley, Calif., 1990).

Huppler, D. A.

Jiang, Y.

Kruger, R. A.

Leith, E. N.

Roesler, F. L.

Tracy, D. H.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1984), p. 403.

Wu, J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the all-reflection interferometer with entrance aperture, spherical grating, and secondary mirrors shown in three-dimensional perspective.

Fig. 2
Fig. 2

Photograph of a typical fringe pattern recorded on a charge-coupled device (CCD) imager.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ ap = θ 1 ,
( 1 ) λ d = sin ( θ 1 ) sin ( θ ap ) ,
θ ap = sin 1 ( λ 2 d ) .
( 1 ) λ d = sin ( θ 1 ) sin ( θ ap ) ,
θ ap = sin 1 ( d λ d ) .
d = 3 λ 2 ,
θ ap = sin 1 ( 1 3 ) = 19 . 47 ° .

Metrics