Abstract

The heat-transfer coefficient of a plate that is modeled by a flat-coiled fiber is measured by an interferometric method. The coefficient is determined from the temporal change of the number of fringe displacements.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959), p. 120.
  2. A. J. Chapman, Heat Transfer (Macmillan, New York, 1967), p. 131.
  3. E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972), p. 146.
  4. J. P. Holman, Heat Transfer (McGraw-HillKogakusha, Tokyo, 1976), p. 106.
  5. C. J. Scott, “Transient experimental techniques for surface heat flux rates,” in Measurements in Heat Transfer, E. R. G. Eckert, R. J. Goldstein, eds. (McGraw-Hill, New York, 1976), p. 375.
  6. O. Fukumoto, ed., Polyamide Plastics (Nikkan Kogyo Shinbunsha, Tokyo, 1970), p. 79.
  7. J. A. Adams, D. F. Rogers, Computer-Aided Heat Transfer Analysis (McGraw-HillKogakusha, Tokyo, 1973), p. 228.
  8. F. M. White, Heat Transfer (Addison-Wesley, Reading, Mass., 1984), p. 22.
  9. U. Grigull, H. Sandner, Heat Conduction (translated by J. Kestin, Springer-Verlag, Berlin, 1984), p. 17.

Adams, J. A.

J. A. Adams, D. F. Rogers, Computer-Aided Heat Transfer Analysis (McGraw-HillKogakusha, Tokyo, 1973), p. 228.

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959), p. 120.

Chapman, A. J.

A. J. Chapman, Heat Transfer (Macmillan, New York, 1967), p. 131.

Drake, R. M.

E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972), p. 146.

Eckert, E. R. G.

E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972), p. 146.

Grigull, U.

U. Grigull, H. Sandner, Heat Conduction (translated by J. Kestin, Springer-Verlag, Berlin, 1984), p. 17.

Holman, J. P.

J. P. Holman, Heat Transfer (McGraw-HillKogakusha, Tokyo, 1976), p. 106.

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959), p. 120.

Rogers, D. F.

J. A. Adams, D. F. Rogers, Computer-Aided Heat Transfer Analysis (McGraw-HillKogakusha, Tokyo, 1973), p. 228.

Sandner, H.

U. Grigull, H. Sandner, Heat Conduction (translated by J. Kestin, Springer-Verlag, Berlin, 1984), p. 17.

Scott, C. J.

C. J. Scott, “Transient experimental techniques for surface heat flux rates,” in Measurements in Heat Transfer, E. R. G. Eckert, R. J. Goldstein, eds. (McGraw-Hill, New York, 1976), p. 375.

White, F. M.

F. M. White, Heat Transfer (Addison-Wesley, Reading, Mass., 1984), p. 22.

Other

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959), p. 120.

A. J. Chapman, Heat Transfer (Macmillan, New York, 1967), p. 131.

E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer (McGraw-Hill, New York, 1972), p. 146.

J. P. Holman, Heat Transfer (McGraw-HillKogakusha, Tokyo, 1976), p. 106.

C. J. Scott, “Transient experimental techniques for surface heat flux rates,” in Measurements in Heat Transfer, E. R. G. Eckert, R. J. Goldstein, eds. (McGraw-Hill, New York, 1976), p. 375.

O. Fukumoto, ed., Polyamide Plastics (Nikkan Kogyo Shinbunsha, Tokyo, 1970), p. 79.

J. A. Adams, D. F. Rogers, Computer-Aided Heat Transfer Analysis (McGraw-HillKogakusha, Tokyo, 1973), p. 228.

F. M. White, Heat Transfer (Addison-Wesley, Reading, Mass., 1984), p. 22.

U. Grigull, H. Sandner, Heat Conduction (translated by J. Kestin, Springer-Verlag, Berlin, 1984), p. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Flat-coiled fiber plate, (b) cross section of the plate, (c) effective thickness of the plate.

Fig. 2
Fig. 2

Experimental configuration: MO, microscope objective, M, mirror, HM, half-mirror, PD, photodiode.

Fig. 3
Fig. 3

Variation of In |dN/dt| with t.

Fig. 4
Fig. 4

Dependence of h on ln(δT).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α 2 θ / x 2 = θ / t ,
θ ( x , 0 ) = 1 ,
k θ / x = h θ ( x , t ) at x = l ,
k θ / x = h θ ( x , t ) at x = l ,
θ ( x , t ) = Σ C n cos ( λ n x ) exp ( αλ n 2 t ) ,
C n = 2 sin ( λ n l ) / [ λ n l + sin ( λ n l ) cos ( λ n l ) ] ,
λ n l tan ( λ n l ) = h l / k , n = 1 , 2 , 3 , .
θ ( 0 , t ) = C 1 exp ( μ 1 t ) ,
ln θ ( 0 , t ) = ln C 1 μ 1 t ,
d T / d t = μ 1 C 1 δ T exp ( μ 1 t ) ,
ln | d T / d t | = ln ( μ 1 C 1 δ T ) μ 1 t ,
ln | d T / d t | = ln ( μ 1 C 1 L S δ T ) μ 1 t .

Metrics