Abstract

A multibeam transmitter provides the flexibility to change the overlap function and range response function of monostatic incoherent lidar systems. A nearly flat range response and a close near-range coverage can be achieved simultaneously, even under different atmospheric conditions. Such a significant improvement in range response will solve the problem of detector overexposure by near-range atmosphere-backscattered radiation (which leads to nonlinear response, saturation, or even damage of the detector), and will significantly reduce the dynamic range of the detector output signal, thus reducing quantization error of the digitizer. Consequently, the accuracy of lidar measurements, especially that of differential absorption lidar measurements, will be improved.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowske, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 28, 3303–3315 (1990).
    [CrossRef]
  2. Y. Likura, N. Sugimoto, Y. Sasano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987).
    [CrossRef] [PubMed]
  3. P. A. Wissell, “Design, construction and performance evaluation of a gain-switched amplifier for lidar applications,” M.S. thesis (Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Ariz., 1983).
  4. The absorption cross-section data were kindly provided by M. H. Proffitt and were printed out from a tape by A. M. Bass at the Gas and Particulate Science Division, Center for Analytical Chemistry, National Institute of Standards and Technology, Gaithersburg, Md.
  5. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
    [CrossRef] [PubMed]
  6. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  7. G. J. Megie, G. Ancellet, J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985).
    [CrossRef] [PubMed]
  8. E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
    [CrossRef]
  9. K. W. Rothe, H. Walter, J. Werner, “Differential-absorption measurements with fixed-frequency IR and UV lasers,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, New York, 1983), pp. 10–16.
  10. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  11. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)
  12. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976), p. 288.
  13. W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978).
  14. S. Twomey, H. B. Howell, “The relative merit of white and monochromatic light for the determination of visibility by backscattering measurements,” Appl. Opt. 4, 501–506 (1965).
    [CrossRef]
  15. J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Aerosol extinction to backscatter ratios: measurements and calculations,” in Abstracts of Papers, 12th International Laser Radar Conference (Etablissement d’Etude et de Recherche Météorologique, Paris,1984), pp 31–33.
  16. Yasahiro Sasano, E. V. Browell, “Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength lidar measurements,” in Abstracts of Papers, 13th International Laser Radar Conference (National Aeronautics and Space Administration, Hampton, Va., 1986), pp. 28–31.

1990 (1)

1989 (1)

E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
[CrossRef]

1987 (1)

1985 (1)

1979 (1)

1978 (2)

1965 (1)

Ancellet, G.

Apte, M. V.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Aerosol extinction to backscatter ratios: measurements and calculations,” in Abstracts of Papers, 12th International Laser Radar Conference (Etablissement d’Etude et de Recherche Météorologique, Paris,1984), pp 31–33.

Ben-David, A.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Aerosol extinction to backscatter ratios: measurements and calculations,” in Abstracts of Papers, 12th International Laser Radar Conference (Etablissement d’Etude et de Recherche Météorologique, Paris,1984), pp 31–33.

Browell, E. V.

E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
[CrossRef]

Yasahiro Sasano, E. V. Browell, “Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength lidar measurements,” in Abstracts of Papers, 13th International Laser Radar Conference (National Aeronautics and Space Administration, Hampton, Va., 1986), pp. 28–31.

Dombrowske, M.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)

Halldorsson, T.

Harms, J.

Herman, B. M.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Aerosol extinction to backscatter ratios: measurements and calculations,” in Abstracts of Papers, 12th International Laser Radar Conference (Etablissement d’Etude et de Recherche Météorologique, Paris,1984), pp 31–33.

Howell, H. B.

Korb, C. L.

Lahmann, W.

Langerholc, J.

Lee, H. S.

Likura, Y.

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976), p. 288.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)

Megie, G. J.

Pelon, J.

Prasad, C.

Reagan, J. A.

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Aerosol extinction to backscatter ratios: measurements and calculations,” in Abstracts of Papers, 12th International Laser Radar Conference (Etablissement d’Etude et de Recherche Météorologique, Paris,1984), pp 31–33.

Rothe, K. W.

K. W. Rothe, H. Walter, J. Werner, “Differential-absorption measurements with fixed-frequency IR and UV lasers,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, New York, 1983), pp. 10–16.

Sasano, Y.

Sasano, Yasahiro

Yasahiro Sasano, E. V. Browell, “Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength lidar measurements,” in Abstracts of Papers, 13th International Laser Radar Conference (National Aeronautics and Space Administration, Hampton, Va., 1986), pp. 28–31.

Schwemmer, G. K.

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)

Shimizu, H.

Sugimoto, N.

Twomey, S.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)

Walter, H.

K. W. Rothe, H. Walter, J. Werner, “Differential-absorption measurements with fixed-frequency IR and UV lasers,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, New York, 1983), pp. 10–16.

Weitkamp, C.

Werner, J.

K. W. Rothe, H. Walter, J. Werner, “Differential-absorption measurements with fixed-frequency IR and UV lasers,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, New York, 1983), pp. 10–16.

Wissell, P. A.

P. A. Wissell, “Design, construction and performance evaluation of a gain-switched amplifier for lidar applications,” M.S. thesis (Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Ariz., 1983).

Appl. Opt. (7)

Proc. IEEE (1)

E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
[CrossRef]

Other (8)

K. W. Rothe, H. Walter, J. Werner, “Differential-absorption measurements with fixed-frequency IR and UV lasers,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, New York, 1983), pp. 10–16.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere (revised),” AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Mass., 1972)

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976), p. 288.

W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978).

J. A. Reagan, M. V. Apte, A. Ben-David, B. M. Herman, “Aerosol extinction to backscatter ratios: measurements and calculations,” in Abstracts of Papers, 12th International Laser Radar Conference (Etablissement d’Etude et de Recherche Météorologique, Paris,1984), pp 31–33.

Yasahiro Sasano, E. V. Browell, “Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength lidar measurements,” in Abstracts of Papers, 13th International Laser Radar Conference (National Aeronautics and Space Administration, Hampton, Va., 1986), pp. 28–31.

P. A. Wissell, “Design, construction and performance evaluation of a gain-switched amplifier for lidar applications,” M.S. thesis (Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Ariz., 1983).

The absorption cross-section data were kindly provided by M. H. Proffitt and were printed out from a tape by A. M. Bass at the Gas and Particulate Science Division, Center for Analytical Chemistry, National Institute of Standards and Technology, Gaithersburg, Md.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Systematic error caused by detector nonlinearity. (a) Off-line (P1) and on-line (P2) signals, (b) distortion fractions t(P1) and t(P2), (c) the difference between the t(P)’s, (d) the resultant error by differentiation of t(P2) − t(P1).

Fig. 2
Fig. 2

Schematic optical layout of a multibeam transmitter: M1, M2, …, M N , beam splitters.

Fig. 3
Fig. 3

Schematic illustration of the single point receiving efficiency.

Fig. 4
Fig. 4

Schematic optical layout of the DIAL system with a multibeam transmitter.

Fig. 5
Fig. 5

(a) Overlap functions and (b) range response functions, for individual beams 1–3.

Fig. 6
Fig. 6

(a) Overall overlap functions and (b) and (c) overall range response functions for nine different laser pulse energy allocations among the three beams.

Fig. 7
Fig. 7

Off-line signal powers for (a) cases 1, 2, and 7 and (b) cases 3, 4, 5a, 5b, 5c, 6, and 7.

Fig. 8
Fig. 8

On-line signal powers for (a) cases 1, 2, and 7 and (b) cases 3, 4, 5a, 5b, 5c, 6, and 7.

Fig. 9
Fig. 9

Errors in ozone concentration due to differences in energy allocations among transmitting laser beams at off-line and on-line wavelengths. b11:b21:b31 = 0.0526:0.105:0.842 and b12:b22:b32 = 0.052:0.103:0.845

Tables (4)

Tables Icon

Table 1 DIAL System Parameters for Simulations

Tables Icon

Table 2 Atmospheric Parameters for Numerical Simulations,

Tables Icon

Table 3 Backscattering Coefficient as a Function of Height

Tables Icon

Table 4 Energy Allocation Among Laser Beams (b1, b2, b3) in Different Cases

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = C A η ( z ) z 2 β ( z ) T 2 ( z ) = C A R s ( z ) β ( z ) T 2 ( z ) ,
P ( z ) = P A ( z ) η ( z ) ,
P A ( z ) = C A z 2 β ( z ) T 2 ( z )
1 p d p d z = 1 η d η d z - 2 z - 2 σ ( z ) + 1 β d β d z ,
Λ ( z ) = ln [ P 1 ( z ) P 2 ( z ) ] = ln [ P 1 ( z ) P 2 ( z ) ] + ln [ 1 - t ( P 1 ) 1 - t ( P 2 ) ] .
η ( z ) = i = 1 N b i η i ( z ) ,
f ( Q , z ) = A B ,
η ( z ) = s I ( Q , z ) f ( Q , z ) d Q s I ( Q , z ) d Q ,
= d ln ψ d z = 1 η 1 d η 1 d z - 1 η 2 d η 2 d z 1 η ¯ ( d η 1 d z - d η 2 d z ) ,
b 3 j = R 3 j Σ , b 2 j = T 3 j R 2 j Σ , b 1 j = T 3 j T 2 j R 1 j Σ ,
Σ = R 3 j + T 3 j R 2 j + T 3 j T 2 j R 1 j .

Metrics