Abstract

Transmission losses of two types of dielectric-coated rectangular waveguide are analyzed theoretically to transmit linearly or circularly polarized CO2 laser light. When ZnS and PbTe are chosen as coating materials, waveguide losses are reduced by ~ 1 order of magnitude by increasing each pair of coating materials. Phosphor bronze rectangular waveguides with small aspect ratios and various cross sections, whose inner walls are coated with a single PbF2 layer, are fabricated by using vacuum-evaporation and assembly techniques. Transmission losses of straight and bent waveguides are measured for coherent CO2 laser light as well as for incoherent infrared lights. Straight waveguide losses of 0.1 dB/m including a coupling loss from a laser, are obtained at a 10.6-μm wavelength for 1-m-long and small-core waveguides.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
    [CrossRef]
  2. C. A. Worrell, “Infrared optical constants for CO2 laser waveguide materials,” J. Mater. Sci. 21, 781–787 (1986).
    [CrossRef]
  3. R. M. Jenkins, R. W. J. Devereux, “Dispersion phenomena in hollow alumina waveguides,” IEEE J. Quantum Electron. QE-21, 1722–1727 (1985).
    [CrossRef]
  4. J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  5. M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
    [CrossRef]
  6. J. A. Harrington, Fiber Optic Materials Research Program, Rutgers University, Piscataway, N.J. 08855 (personal communication, 1992).
  7. A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
    [CrossRef]
  8. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kW-class CO2 laser light through dielectric-coated metallic hollow wavegiudes for material processing,” Appl. Opt. 31, 5114–5120 (1992).
    [CrossRef] [PubMed]
  9. M. Alaluf, J. Dror, N. Croitoru, “Plastic hollow waveguides as transmitters and filters in mid-IR radiation,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 146–151 (1991).
  10. E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
    [CrossRef]
  11. U. Kubo, Y. Hashishin, “Hollow light guide tube for CO2 laser beam,” in Optical Fibers in Medicine II, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.713, 17–21 (1987).
  12. J. Gombert, M. Gazard, “Attenuation characteristics of planar dielectric coated metallic waveguide for 10.6 μm radiation,” Opt. Commun. 58, 307–310 (1988).
    [CrossRef]
  13. H. Machida, H. Ishikawa, M. Miyagi, “Fabrication of thin dielectric-coated square waveguide for CO2 laser light transmission,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 116–122 (1991).
  14. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]

1992 (1)

1991 (1)

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

1990 (1)

1989 (1)

1988 (1)

J. Gombert, M. Gazard, “Attenuation characteristics of planar dielectric coated metallic waveguide for 10.6 μm radiation,” Opt. Commun. 58, 307–310 (1988).
[CrossRef]

1986 (1)

C. A. Worrell, “Infrared optical constants for CO2 laser waveguide materials,” J. Mater. Sci. 21, 781–787 (1986).
[CrossRef]

1985 (1)

R. M. Jenkins, R. W. J. Devereux, “Dispersion phenomena in hollow alumina waveguides,” IEEE J. Quantum Electron. QE-21, 1722–1727 (1985).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

1981 (1)

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

1980 (1)

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Alaluf, M.

M. Alaluf, J. Dror, N. Croitoru, “Plastic hollow waveguides as transmitters and filters in mid-IR radiation,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 146–151 (1991).

Bass, M.

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Croitoru, N.

M. Alaluf, J. Dror, N. Croitoru, “Plastic hollow waveguides as transmitters and filters in mid-IR radiation,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 146–151 (1991).

Devereux, R. W. J.

R. M. Jenkins, R. W. J. Devereux, “Dispersion phenomena in hollow alumina waveguides,” IEEE J. Quantum Electron. QE-21, 1722–1727 (1985).
[CrossRef]

Dror, J.

M. Alaluf, J. Dror, N. Croitoru, “Plastic hollow waveguides as transmitters and filters in mid-IR radiation,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 146–151 (1991).

Garmire, E.

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Gazard, M.

J. Gombert, M. Gazard, “Attenuation characteristics of planar dielectric coated metallic waveguide for 10.6 μm radiation,” Opt. Commun. 58, 307–310 (1988).
[CrossRef]

Gombert, J.

J. Gombert, M. Gazard, “Attenuation characteristics of planar dielectric coated metallic waveguide for 10.6 μm radiation,” Opt. Commun. 58, 307–310 (1988).
[CrossRef]

Gregory, C. C.

Harrington, J. A.

J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

J. A. Harrington, Fiber Optic Materials Research Program, Rutgers University, Piscataway, N.J. 08855 (personal communication, 1992).

Hashimoto, T.

Hashishin, Y.

U. Kubo, Y. Hashishin, “Hollow light guide tube for CO2 laser beam,” in Optical Fibers in Medicine II, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.713, 17–21 (1987).

Hidaka, T.

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

Hongo, A.

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kW-class CO2 laser light through dielectric-coated metallic hollow wavegiudes for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

Ishikawa, H.

H. Machida, H. Ishikawa, M. Miyagi, “Fabrication of thin dielectric-coated square waveguide for CO2 laser light transmission,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 116–122 (1991).

Iwasaki, S.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Jenkins, R. M.

R. M. Jenkins, R. W. J. Devereux, “Dispersion phenomena in hollow alumina waveguides,” IEEE J. Quantum Electron. QE-21, 1722–1727 (1985).
[CrossRef]

Kawakami, S.

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

Kubo, U.

U. Kubo, Y. Hashishin, “Hollow light guide tube for CO2 laser beam,” in Optical Fibers in Medicine II, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.713, 17–21 (1987).

Machida, H.

H. Machida, H. Ishikawa, M. Miyagi, “Fabrication of thin dielectric-coated square waveguide for CO2 laser light transmission,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 116–122 (1991).

Matsumoto, K.

Matsuura, Y.

McMahon, T.

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Miyagi, M.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

H. Machida, H. Ishikawa, M. Miyagi, “Fabrication of thin dielectric-coated square waveguide for CO2 laser light transmission,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 116–122 (1991).

Morikawa, T.

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

Morosawa, K.

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kW-class CO2 laser light through dielectric-coated metallic hollow wavegiudes for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Saito, M.

Shimada, J.

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

Shiota, T.

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kW-class CO2 laser light through dielectric-coated metallic hollow wavegiudes for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Suzuki, K.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Worrell, C. A.

C. A. Worrell, “Infrared optical constants for CO2 laser waveguide materials,” J. Mater. Sci. 21, 781–787 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1 kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

IEEE J. Quantum Electron. (3)

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

R. M. Jenkins, R. W. J. Devereux, “Dispersion phenomena in hollow alumina waveguides,” IEEE J. Quantum Electron. QE-21, 1722–1727 (1985).
[CrossRef]

J. Appl. Phys. (1)

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

J. Mater. Sci. (1)

C. A. Worrell, “Infrared optical constants for CO2 laser waveguide materials,” J. Mater. Sci. 21, 781–787 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Gombert, M. Gazard, “Attenuation characteristics of planar dielectric coated metallic waveguide for 10.6 μm radiation,” Opt. Commun. 58, 307–310 (1988).
[CrossRef]

Opt. Lett. (1)

Other (4)

J. A. Harrington, Fiber Optic Materials Research Program, Rutgers University, Piscataway, N.J. 08855 (personal communication, 1992).

M. Alaluf, J. Dror, N. Croitoru, “Plastic hollow waveguides as transmitters and filters in mid-IR radiation,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 146–151 (1991).

H. Machida, H. Ishikawa, M. Miyagi, “Fabrication of thin dielectric-coated square waveguide for CO2 laser light transmission,” in Infrared Fiber Optics III, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 116–122 (1991).

U. Kubo, Y. Hashishin, “Hollow light guide tube for CO2 laser beam,” in Optical Fibers in Medicine II, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.713, 17–21 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of hollow waveguide with dielectric multilayers for linear polarization. (a), (b) Refractive-index profiles that make α p −1TM and α q −1TE minimum, respectively, where a2 > a1.

Fig. 2
Fig. 2

Rectangular metallic hollow waveguide and its schematic decomposition to two-dimensional slab waveguides.

Fig. 3
Fig. 3

Attenuation constants of (a) linearly and (b) circularly polarized dominant modes in various metallic waveguides with inner ZnS and PbTe layers at 10.6 μm as a function of m, where T x = T y = 0.5 mm.

Fig. 4
Fig. 4

Attenuation constants of (a) linearly and (b) circularly polarized dominant modes in Ag waveguides with various dielectric multilayers at 10.6 μm as a function of m, where T x , = T y = 0.5 mm.

Fig. 5
Fig. 5

Bending losses of 1-m-long P.B. and two-wall-PbF2-coated waveguides with a cross section of 1 mm × 1 mm. ○ and △ correspond to E and E||, respectively. Dashed and solid curves represent the least-mean-square curves of c0 + c1/R + c2/R2 for the small curvature and c3 + c4/R for the large curvature, respectively.

Fig. 6
Fig. 6

Bending losses of 1-m-long P.B. and two-wall-PbF2-coated waveguides with a cross section of 1 mm × 2 mm. Dashed and solid curves are as defined in Fig. 5.

Fig. 7
Fig. 7

Bending losses of 1-m-long P.B. and four-wall-PbF2-coated waveguides with a cross section of 1 mm × 1 mm. Dashed and solid curves are as defined in Fig. 5.

Fig. 8
Fig. 8

Output beam profiles of a 1-m-long two-wall-PbF2-coated waveguide with a cross section of 1 mm × 1 mm. (a), (b) Straight and bent waveguides, respectively.

Fig. 9
Fig. 9

Attenuation spectra of a 1-m-long two-wall-PbF2-coated waveguide with a cross section of 1 mm × 1 mm measured immediately following fabrication of the waveguide and after one year.

Tables (1)

Tables Icon

Table 1 Power Losses of Various Types of Straight Waveguide

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α p q y = α p - 1 TE + α q - 1 TM
d i = π 2 n 0 k 0 ( a i 2 - 1 ) 1 / 2 ,             ( i = 1 , 2 ) ,
d 0 = π 2 n 0 k 0 ( a 1 2 - 1 ) 1 / 2 .
α p q y = 1 ( n 0 k 0 ) 2 n n 2 + κ 2 × [ u p 2 T x 3 ( a 1 2 - 1 a 2 2 - 1 ) m + a 1 4 a 1 2 - 1 u q 2 T y 3 ( a 1 4 a 2 2 - 1 a 2 4 a 1 2 - 1 ) m ] ,
d 0 = 1 n 0 k 0 ( a 1 2 - 1 ) 1 / 2 × tan - 1 [ a 1 ( a 1 2 - 1 ) 1 / 4 ( a 1 a 2 ) m ( a 2 2 - 1 a 1 2 - 1 ) m / 2 ] .
α = n 0 k 0 U p 2 ( n 0 k 0 T ) 3 n n 2 + κ 2 ( a 1 2 - 1 a 2 2 - 1 ) m × [ 1 + a 1 2 ( a 1 2 - 1 ) 1 / 2 ( a 1 a 2 ) 2 m ( a 2 2 - 1 a 1 2 - 1 ) m ] 2 .

Metrics