Abstract

We have determined the optical damage threshold of orthorhombic potassium niobate under pulsed laser irradiation for wavelengths of 1054 and 527 nm and pulse durations of 700 and 500 ps, respectively. Six uncoated crystals and two crystals with antireflection coating were tested. The single-shot damage thresholds varied between 4.1 J/cm2 at 527 nm (lowest value observed) and 26.4 J/cm2 at 1054 nm (the highest value observed). The threshold fluence was found to depend on the polarization direction of the incident radiation with respect to the crystal axes.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kato, “High-efficiency second-harmonic generation at 4250–4680 Å in KNbO3,” IEEE J. Quantum Electron. QE-15, 410–411 (1979).
    [Crossref]
  2. P. Günter, “Near infrared noncritically phase matched second-harmonic generation in KNbO3,” Appl. Phys. Lett. 34, 650–652(1979).
    [Crossref]
  3. J. C. Baumert, P. Günter, H. Melchior, “High-efficiency intracavity frequency generation in KNbO3,” Opt. Commun. 48, 215–225 (1983).
    [Crossref]
  4. I. Biaggio, Institut für Quantenelektronik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland (personal communication).
  5. P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
    [Crossref]
  6. E. Voit, C. Zaldo, P. Günter, “Optically induced variable light deflection by anisotropic Bragg diffraction in photorefractive KNbO3,” Opt. Lett. 11, 309–311 (1986).
    [Crossref] [PubMed]
  7. E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263–281 (1974).
    [Crossref]
  8. Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystals in orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
    [Crossref]
  9. P. Günter, “Electro-optical properties of KNbO3,” in Electro-Optics/Laser Proceedings International ’76 UK, H. G. Jerrard, ed. (IPC, London, 1976), pp. 121–130.
  10. J. C. Baumert, J. Hoffnagle, P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby, and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1984).
  11. J. C. Baumert, P. Günter, “Phase-matched sum frequency generation in crystals for efficient upconversion of Nd:YAG lasers into the blue wavelength range,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THQ3.
  12. L. Katz, H. D. Megaw, “The structure of potassium niobate at room temperature: the resolution of a pseudosymmetric structure by Fourier methods,” Acta Crystallogr. 22, 639–648 (1966).
    [Crossref]
  13. U. J. Flückiger, “Darstellung und Eigenschaften von reinen und dotierten, eindomärigen KNbO3-Kristallen,” Ph.D dissertation (University of Zürich, Zürich, 1976).
  14. Wu Xing, H. Looser, H. Wüst, H. Arend, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431 (1986).
    [Crossref]
  15. G. C. Mizell, W. R. Fay, Y. Shimoji, “Advances in the production of KNBO3 crystals,” in Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, R. W. Schwartz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.968, 88–92 (1988).
  16. The samples were produced by Virgo Optics, Port Richey, Fla., and by Sandoz Optoelectronics, F-68330 Huningue, France.
  17. The dual-band, multilayer dielectric coatings were provided by Virgo Optics, Port Richey, Fla.
  18. A. P. Schwarzenbach, H. P. Weber, J. Balmer, “Laser damage test on Balzers thin film coatings,” Appl. Opt. 23, 3764–3766 (1984).
    [Crossref] [PubMed]
  19. K. H. Guenther, T. W. Humpherys, J. Balmer, J. R. Bettis, E. Casparis, J. Ebert, M. Eichner, A. H. Guenther, E. Kiesel, R. Kuehnel, D. Milam, W. Ryseck, S. C. Seitel, A. F. Stewart, H. Weber, H. P. Weber, G. R. Wirtenson, R. M. Wood, “1.06-μm laser damage of thin film optical coatings: around-robin experiment involving various pulse lengths and beam diameters,” Appl. Opt. 23, 3743–3752 (1984).
    [Crossref] [PubMed]
  20. W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
    [Crossref]
  21. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in transparent solids: up-to-date status of research and understanding,” Natl. Inst. Stand. Technol. Spec. Publ. 775, 486–501 (1988).
  22. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390 (1987).
    [Crossref] [PubMed]
  23. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616 (1989).
    [Crossref]
  24. J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
    [Crossref]
  25. F. Rainer, E. A. Hildum, “Damage measurements at 1064 nm,” Rep. UCRL-50021-87 (University of California Radiation Laboratory, Livermore, Calif., 1987), Chap. 6, pp. 13–18.
  26. W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

1989 (1)

1988 (1)

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in transparent solids: up-to-date status of research and understanding,” Natl. Inst. Stand. Technol. Spec. Publ. 775, 486–501 (1988).

1987 (1)

1986 (2)

1984 (2)

1983 (1)

J. C. Baumert, P. Günter, H. Melchior, “High-efficiency intracavity frequency generation in KNbO3,” Opt. Commun. 48, 215–225 (1983).
[Crossref]

1982 (1)

J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
[Crossref]

1981 (1)

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[Crossref]

1979 (2)

K. Kato, “High-efficiency second-harmonic generation at 4250–4680 Å in KNbO3,” IEEE J. Quantum Electron. QE-15, 410–411 (1979).
[Crossref]

P. Günter, “Near infrared noncritically phase matched second-harmonic generation in KNbO3,” Appl. Phys. Lett. 34, 650–652(1979).
[Crossref]

1978 (1)

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[Crossref]

1974 (2)

E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263–281 (1974).
[Crossref]

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystals in orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[Crossref]

1966 (1)

L. Katz, H. D. Megaw, “The structure of potassium niobate at room temperature: the resolution of a pseudosymmetric structure by Fourier methods,” Acta Crystallogr. 22, 639–648 (1966).
[Crossref]

Arend, H.

Wu Xing, H. Looser, H. Wüst, H. Arend, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431 (1986).
[Crossref]

Balmer, J.

Baumert, J. C.

J. C. Baumert, P. Günter, H. Melchior, “High-efficiency intracavity frequency generation in KNbO3,” Opt. Commun. 48, 215–225 (1983).
[Crossref]

J. C. Baumert, P. Günter, “Phase-matched sum frequency generation in crystals for efficient upconversion of Nd:YAG lasers into the blue wavelength range,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THQ3.

J. C. Baumert, J. Hoffnagle, P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby, and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1984).

Bettis, J. R.

Biaggio, I.

I. Biaggio, Institut für Quantenelektronik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland (personal communication).

Byer, R. L.

Casparis, E.

Chen, C.

Ebert, J.

Eckardt, R. C.

Eichner, M.

Ellgehausen, D.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Fan, T. Y.

Fan, Y. X.

Fay, W. R.

G. C. Mizell, W. R. Fay, Y. Shimoji, “Advances in the production of KNBO3 crystals,” in Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, R. W. Schwartz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.968, 88–92 (1988).

Feigelson, R. S.

Flückiger, U. J.

U. J. Flückiger, “Darstellung und Eigenschaften von reinen und dotierten, eindomärigen KNbO3-Kristallen,” Ph.D dissertation (University of Zürich, Zürich, 1976).

Guenther, A. H.

Guenther, K. H.

Günter, P.

E. Voit, C. Zaldo, P. Günter, “Optically induced variable light deflection by anisotropic Bragg diffraction in photorefractive KNbO3,” Opt. Lett. 11, 309–311 (1986).
[Crossref] [PubMed]

J. C. Baumert, P. Günter, H. Melchior, “High-efficiency intracavity frequency generation in KNbO3,” Opt. Commun. 48, 215–225 (1983).
[Crossref]

P. Günter, “Near infrared noncritically phase matched second-harmonic generation in KNbO3,” Appl. Phys. Lett. 34, 650–652(1979).
[Crossref]

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[Crossref]

P. Günter, “Electro-optical properties of KNbO3,” in Electro-Optics/Laser Proceedings International ’76 UK, H. G. Jerrard, ed. (IPC, London, 1976), pp. 121–130.

J. C. Baumert, P. Günter, “Phase-matched sum frequency generation in crystals for efficient upconversion of Nd:YAG lasers into the blue wavelength range,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THQ3.

J. C. Baumert, J. Hoffnagle, P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby, and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1984).

Hildum, E. A.

F. Rainer, E. A. Hildum, “Damage measurements at 1064 nm,” Rep. UCRL-50021-87 (University of California Radiation Laboratory, Livermore, Calif., 1987), Chap. 6, pp. 13–18.

Hoffnagle, J.

J. C. Baumert, J. Hoffnagle, P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby, and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1984).

Hu, B. Q.

Huang, C. E.

Humpherys, T. W.

Jiang, A.

Kato, K.

K. Kato, “High-efficiency second-harmonic generation at 4250–4680 Å in KNbO3,” IEEE J. Quantum Electron. QE-15, 410–411 (1979).
[Crossref]

Katz, L.

L. Katz, H. D. Megaw, “The structure of potassium niobate at room temperature: the resolution of a pseudosymmetric structure by Fourier methods,” Acta Crystallogr. 22, 639–648 (1966).
[Crossref]

Kennedy, G. E.

J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
[Crossref]

Kiesel, E.

Kortz, P.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Kuehnel, R.

Li, R.

Lin, S.

Looser, H.

Wu Xing, H. Looser, H. Wüst, H. Arend, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431 (1986).
[Crossref]

Lowdermilk, W. H.

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[Crossref]

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in transparent solids: up-to-date status of research and understanding,” Natl. Inst. Stand. Technol. Spec. Publ. 775, 486–501 (1988).

Megaw, H. D.

L. Katz, H. D. Megaw, “The structure of potassium niobate at room temperature: the resolution of a pseudosymmetric structure by Fourier methods,” Acta Crystallogr. 22, 639–648 (1966).
[Crossref]

Melchior, H.

J. C. Baumert, P. Günter, H. Melchior, “High-efficiency intracavity frequency generation in KNbO3,” Opt. Commun. 48, 215–225 (1983).
[Crossref]

Micheron, F.

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[Crossref]

Milam, D.

K. H. Guenther, T. W. Humpherys, J. Balmer, J. R. Bettis, E. Casparis, J. Ebert, M. Eichner, A. H. Guenther, E. Kiesel, R. Kuehnel, D. Milam, W. Ryseck, S. C. Seitel, A. F. Stewart, H. Weber, H. P. Weber, G. R. Wirtenson, R. M. Wood, “1.06-μm laser damage of thin film optical coatings: around-robin experiment involving various pulse lengths and beam diameters,” Appl. Opt. 23, 3743–3752 (1984).
[Crossref] [PubMed]

J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
[Crossref]

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[Crossref]

Mizell, G.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Mizell, G. C.

G. C. Mizell, W. R. Fay, Y. Shimoji, “Advances in the production of KNBO3 crystals,” in Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, R. W. Schwartz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.968, 88–92 (1988).

Rainer, F.

F. Rainer, E. A. Hildum, “Damage measurements at 1064 nm,” Rep. UCRL-50021-87 (University of California Radiation Laboratory, Livermore, Calif., 1987), Chap. 6, pp. 13–18.

Ryseck, W.

Rytz, D.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Schwarzenbach, A. P.

Seelert, W.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Seitel, S. C.

Shimoji, Y.

G. C. Mizell, W. R. Fay, Y. Shimoji, “Advances in the production of KNBO3 crystals,” in Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, R. W. Schwartz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.968, 88–92 (1988).

Stewart, A. F.

Stokowski, S. E.

J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
[Crossref]

Swain, J. E.

J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
[Crossref]

Uematsu, Y.

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystals in orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[Crossref]

Voit, E.

Weber, H.

Weber, H. P.

Wiesendanger, E.

E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263–281 (1974).
[Crossref]

Wirtenson, G. R.

Wood, R. M.

Wu, B.

Wu, Y.

Wüst, H.

Wu Xing, H. Looser, H. Wüst, H. Arend, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431 (1986).
[Crossref]

Xing, Wu

Wu Xing, H. Looser, H. Wüst, H. Arend, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431 (1986).
[Crossref]

You, G.

Zaldo, C.

Zysset, B.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Acta Crystallogr. (1)

L. Katz, H. D. Megaw, “The structure of potassium niobate at room temperature: the resolution of a pseudosymmetric structure by Fourier methods,” Acta Crystallogr. 22, 639–648 (1966).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Günter, “Near infrared noncritically phase matched second-harmonic generation in KNbO3,” Appl. Phys. Lett. 34, 650–652(1979).
[Crossref]

J. E. Swain, S. E. Stokowski, D. Milam, G. E. Kennedy, “The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals,” Appl. Phys. Lett. 41, 12–14 (1982).
[Crossref]

Ferroelectrics (2)

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[Crossref]

E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263–281 (1974).
[Crossref]

IEEE J. Quantum Electron. (2)

W. H. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[Crossref]

K. Kato, “High-efficiency second-harmonic generation at 4250–4680 Å in KNbO3,” IEEE J. Quantum Electron. QE-15, 410–411 (1979).
[Crossref]

J. Cryst. Growth (1)

Wu Xing, H. Looser, H. Wüst, H. Arend, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystals in orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[Crossref]

Natl. Inst. Stand. Technol. Spec. Publ. (1)

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in transparent solids: up-to-date status of research and understanding,” Natl. Inst. Stand. Technol. Spec. Publ. 775, 486–501 (1988).

Opt. Commun. (1)

J. C. Baumert, P. Günter, H. Melchior, “High-efficiency intracavity frequency generation in KNbO3,” Opt. Commun. 48, 215–225 (1983).
[Crossref]

Opt. Lett. (1)

Other (10)

I. Biaggio, Institut für Quantenelektronik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland (personal communication).

P. Günter, “Electro-optical properties of KNbO3,” in Electro-Optics/Laser Proceedings International ’76 UK, H. G. Jerrard, ed. (IPC, London, 1976), pp. 121–130.

J. C. Baumert, J. Hoffnagle, P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby, and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger, H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1984).

J. C. Baumert, P. Günter, “Phase-matched sum frequency generation in crystals for efficient upconversion of Nd:YAG lasers into the blue wavelength range,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THQ3.

G. C. Mizell, W. R. Fay, Y. Shimoji, “Advances in the production of KNBO3 crystals,” in Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, R. W. Schwartz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.968, 88–92 (1988).

The samples were produced by Virgo Optics, Port Richey, Fla., and by Sandoz Optoelectronics, F-68330 Huningue, France.

The dual-band, multilayer dielectric coatings were provided by Virgo Optics, Port Richey, Fla.

U. J. Flückiger, “Darstellung und Eigenschaften von reinen und dotierten, eindomärigen KNbO3-Kristallen,” Ph.D dissertation (University of Zürich, Zürich, 1976).

F. Rainer, E. A. Hildum, “Damage measurements at 1064 nm,” Rep. UCRL-50021-87 (University of California Radiation Laboratory, Livermore, Calif., 1987), Chap. 6, pp. 13–18.

W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell, “Second harmonic generation and degradation in critically phase-matched using diode pumped Q-switched Nd lasers,” in Compact Blue/Green Lasers, Vol. 6 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992, to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Damage threshold fluence of uncoated surfaces of KNbO3 for different sample and polarization configurations. The darker columns show the fluence for the wavelength of 1054 nm and the brighter columns represent values for 527 nm. Single pulses of ~ 700 and ~ 500 ps were used, respectively.

Fig. 2
Fig. 2

Optical micrographs of surface and coating damage on KNbO3 samples. Bar represents 100 μm. (a) Bright-field, close damage threshold; (b) dark-field picture of backside of damage site shown in (a); (c) bright-field, fluence at three times the threshold; (d) backside of damage site shown in (c); (e) Nomarski picture of high-fluence damage site with stress-induced ferroelectric domains, at two and a half times the threshold; (f) Nomarski picture of damage site generated with a 527-nm laser light with deep damage pits, stress-induced ferroelectric domains, and even racks in the surface, at two times the threshold; (g) Nomarski picture of typical coating damage generated with a 1054-nm laser light.

Tables (1)

Tables Icon

Table 1 Measured Damage Threshold Levels for Various Samples and Different Irradiation Conditionsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F p = 2 E tot π ρ 0 2 = 2 F av ,
F p = E tot F p rel A p Σ N c ,
F th = ½ [ F p , max ( ND ) + F p , min ( D ) ] ,

Metrics