Abstract

The techniques of nonimaging optics have permitted the production of a world-record intensity of sunlight, 72 W/mm2, by using a sapphire concentrator. Such an intensity exceeds the intensity of light at the surface of the Sun itself (63 W/mm2) by 15% and may have useful applications in pumping lasers, which require high intensities of light to function. The author describes the production of high-intensity sunlight and reports its application in generating over 3 W of laser power from a 72.5-cm-diameter telescope mirror at an efficiency exceeding that typically attained in approaches not involving nonimaging optics.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Young, “A Sun-pumped cw 1-W laser,” Appl. Opt. 5, 993–997 (1966).
    [Crossref] [PubMed]
  2. N. A. Kozlov, A. A. Mak, B. M. Sedov, “Solid-state, Sun-pumped lasers,” Sov. J. Opt. Technol. 33, 549–553 (1966).
  3. R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970).
    [Crossref]
  4. A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
    [Crossref]
  5. W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).
  6. P. Gleckman, “Achievement of ultrahigh solar concentration with potential for efficient laser pumping,” Appl. Opt. 27, 4385–4391 (1988).
    [Crossref] [PubMed]
  7. D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
    [Crossref]
  8. R. Winston, “Dielectric compound parabolic concentrators,” Appl. Opt. 15, 291–292 (1976).
    [Crossref] [PubMed]
  9. M. Weksler, J. Shwartz, “Solar pumped solid state lasers,” IEEE J. Quantum Electron. 24, 1222–1228 (1988).
    [Crossref]
  10. J. Falk, L. Huff, J. D. Taynai, “Solar-pumped, mode-locked, frequency doubled Nd:YAG laser,” in Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1975), pp. 14–15.
  11. H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
    [Crossref]

1990 (1)

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

1988 (2)

1984 (1)

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

1976 (2)

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
[Crossref]

R. Winston, “Dielectric compound parabolic concentrators,” Appl. Opt. 15, 291–292 (1976).
[Crossref] [PubMed]

1970 (1)

1966 (2)

N. A. Kozlov, A. A. Mak, B. M. Sedov, “Solid-state, Sun-pumped lasers,” Sov. J. Opt. Technol. 33, 549–553 (1966).

C. G. Young, “A Sun-pumped cw 1-W laser,” Appl. Opt. 5, 993–997 (1966).
[Crossref] [PubMed]

Arashi, H.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

Cooke, D.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

Falk, J.

J. Falk, L. Huff, J. D. Taynai, “Solar-pumped, mode-locked, frequency doubled Nd:YAG laser,” in Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1975), pp. 14–15.

Gleckman, P.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

P. Gleckman, “Achievement of ultrahigh solar concentration with potential for efficient laser pumping,” Appl. Opt. 27, 4385–4391 (1988).
[Crossref] [PubMed]

Huff, L.

J. Falk, L. Huff, J. D. Taynai, “Solar-pumped, mode-locked, frequency doubled Nd:YAG laser,” in Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1975), pp. 14–15.

Ishigame, M.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

Kaimai, A.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

Kozlov, N. A.

N. A. Kozlov, A. A. Mak, B. M. Sedov, “Solid-state, Sun-pumped lasers,” Sov. J. Opt. Technol. 33, 549–553 (1966).

Krebs, H.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

Mak, A. A.

N. A. Kozlov, A. A. Mak, B. M. Sedov, “Solid-state, Sun-pumped lasers,” Sov. J. Opt. Technol. 33, 549–553 (1966).

O’Gallagher, J.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

Oka, Y.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

Rabl, A.

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
[Crossref]

Sagie, D.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

Sasahara, N.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

Sedov, B. M.

N. A. Kozlov, A. A. Mak, B. M. Sedov, “Solid-state, Sun-pumped lasers,” Sov. J. Opt. Technol. 33, 549–553 (1966).

Shwartz, J.

M. Weksler, J. Shwartz, “Solar pumped solid state lasers,” IEEE J. Quantum Electron. 24, 1222–1228 (1988).
[Crossref]

Taynai, J. D.

J. Falk, L. Huff, J. D. Taynai, “Solar-pumped, mode-locked, frequency doubled Nd:YAG laser,” in Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1975), pp. 14–15.

Weksler, M.

M. Weksler, J. Shwartz, “Solar pumped solid state lasers,” IEEE J. Quantum Electron. 24, 1222–1228 (1988).
[Crossref]

Welford, W. T.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Winston, R.

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

R. Winston, “Dielectric compound parabolic concentrators,” Appl. Opt. 15, 291–292 (1976).
[Crossref] [PubMed]

R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970).
[Crossref]

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

Young, C. G.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

M. Weksler, J. Shwartz, “Solar pumped solid state lasers,” IEEE J. Quantum Electron. 24, 1222–1228 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, M. Ishigame, “A solar-pumped cw 18 W Nd:YAG laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
[Crossref]

Nature (London) (1)

D. Cooke, P. Gleckman, H. Krebs, J. O’Gallagher, D. Sagie, R. Winston, “Brighter than the Sun,” Nature (London) 346, 802 (1990).
[Crossref]

Sol. Energy (1)

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
[Crossref]

Sov. J. Opt. Technol. (1)

N. A. Kozlov, A. A. Mak, B. M. Sedov, “Solid-state, Sun-pumped lasers,” Sov. J. Opt. Technol. 33, 549–553 (1966).

Other (2)

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, New York, 1989).

J. Falk, L. Huff, J. D. Taynai, “Solar-pumped, mode-locked, frequency doubled Nd:YAG laser,” in Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C., 1975), pp. 14–15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Nonimaging concentrator designed by the edge-ray method, in which all light rays entering the device at the maximum collection angle are directed after one reflection at most to the rim of the exit aperture.

Fig. 2
Fig. 2

Two-stage approach to concentrating sunlight.

Fig. 3
Fig. 3

Calorimetry technique. The calorimeter, or thermos bottle, traps sunlight passing through the tip of the concentrator. The temperature rise of the liquid inside is calibrated with the electric heater.

Fig. 4
Fig. 4

Plot of temperature versus time during solar heating.

Fig. 5
Fig. 5

Plot of temperature versus time during electrical heating.

Fig. 6
Fig. 6

Solar laser system.

Fig. 7
Fig. 7

Plots of laser ouptut versus solar input.

Fig. 8
Fig. 8

Plots of threshold power for (a) the YAG crystal and (b) the GSGG crystal versus −ln R. For high values of reflectivity R, −ln R is approximately equal to the transmission T of the output coupler.

Tables (5)

Tables Icon

Table 1 Two-Stage Concentrator Design Specifications

Tables Icon

Table 2 Summary of High-Flux Data

Tables Icon

Table 3 Irradiance Loss Analysisa

Tables Icon

Table 4 Typical Values for Constants

Tables Icon

Table 5 Sun-Pumped Laser Efficiencies

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C max = n 2 / sin 2 θ ,
C = n 2 cos 2 ϕ / sin 2 θ ,
C = [ 1.76 cos ( 11.5 ° ) / sin ( 0.27 ° ) ] 2 = 137 , 000.
P s = ( Δ T s / Δ T H ) P H .
= I A ( 2 L - ln R ) / 2 P th η a η q η ovp ,
η s = η a η q η ovp T / ( 2 L - ln R ) ,

Metrics