Abstract

The threshold current and spectral properties of a grating tuned external cavity semiconductor laser are improved by utilizing an intracavity half-wave plate to optimize the grating feedback.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
    [CrossRef]
  2. A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
    [CrossRef]
  3. Laser Diode User’s Manual (Sharp Corporation Japan, Osaka 545, Japan, 1988).
  4. E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977); E. G. Loewen, “Diffraction gratings,” in The Photonics Design and Applications Handbook.35th ed., H. Garrett DeYoung, ed. (Laurin, Pittsfield, Mass., 1989), pp. H-344–H-347.
    [CrossRef] [PubMed]
  5. J. Buus, Single Frequency Semiconductor Lasers (SPIE, Bellingham, Wash., 1991).
  6. P. B. Coates, “External cavity stabilization of gain-guided laser diodes for metrological purposes,” J. Phys. E 21, 812–816 (1988).
    [CrossRef]
  7. A Corresponding manufacturer’s data of R⊥/R|| ≈ 5 were obtained at near Littrow condition for an Al-coated grating.
  8. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]
  9. E. T. Peng, C. B. Su, “Properties of an external-cavity traveling-wave semiconductor ring laser,” Opt. Lett. 17, 55–57 (1992).
    [CrossRef] [PubMed]

1992 (1)

1991 (2)

P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
[CrossRef]

K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
[CrossRef] [PubMed]

1990 (1)

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

1988 (1)

P. B. Coates, “External cavity stabilization of gain-guided laser diodes for metrological purposes,” J. Phys. E 21, 812–816 (1988).
[CrossRef]

1977 (1)

Bisberg, J.

P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
[CrossRef]

Buus, J.

J. Buus, Single Frequency Semiconductor Lasers (SPIE, Bellingham, Wash., 1991).

Coates, P. B.

P. B. Coates, “External cavity stabilization of gain-guided laser diodes for metrological purposes,” J. Phys. E 21, 812–816 (1988).
[CrossRef]

Gavrilovic, P.

P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
[CrossRef]

Harvey, K. C.

Ligard, A.

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

Loewen, E. G.

Logan, R. A.

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

Maystre, D.

Myatt, C. J.

Nevière, M.

O’Neill, M.

P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
[CrossRef]

Olsson, N. A.

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

Peng, E. T.

Smirnitskii, V. B.

P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
[CrossRef]

Su, C. B.

Tanbum-Ek, T.

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

Temkin, H.

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

Wecht, K. W.

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett (1)

P. Gavrilovic, V. B. Smirnitskii, J. Bisberg, M. O’Neill, “High-power tunable operation of AlGaAs/GaAs quantum well lasers in an external grating cavity,” Appl. Phys. Lett 58, 1140–1142 (1991), and references therein.
[CrossRef]

Appl. Phys. Lett. (1)

A. Ligard, T. Tanbum-Ek, R. A. Logan, H. Temkin, K. W. Wecht, N. A. Olsson, “External-cavity InGaAs/InP graded index multi-quantum well laser with 200 nm tuning range,” Appl. Phys. Lett. 56, 816–817 (1990).
[CrossRef]

J. Phys. E (1)

P. B. Coates, “External cavity stabilization of gain-guided laser diodes for metrological purposes,” J. Phys. E 21, 812–816 (1988).
[CrossRef]

Opt. Lett. (2)

Other (3)

A Corresponding manufacturer’s data of R⊥/R|| ≈ 5 were obtained at near Littrow condition for an Al-coated grating.

Laser Diode User’s Manual (Sharp Corporation Japan, Osaka 545, Japan, 1988).

J. Buus, Single Frequency Semiconductor Lasers (SPIE, Bellingham, Wash., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic description of the external cavity laser. The half-wave plate enhances grating feedback by matching the diode laser polarization to the high-reflection mode of the grating. The half-wave plate may also control the amount of output coupling by means of an intracavity splitter or the grating zero-order reflection.

Fig. 2
Fig. 2

Laser output at a 40-mA injection current versus the half-wave plate optic axis angle. The output is taken by means of a glass plate oriented near normal incidence. The maximum output power corresponds to the grating orientation, giving the maximum reflection.

Fig. 3
Fig. 3

Laser output versus grating angle for three settings of the half-wave plate optic axis. The output is coupled by a pellicle beam splitter oriented at 45° to the laser beam. The intensity scale of each curve is arbitrary. The maximum and minimum grating feedbacks correspond to (a) and (c), respectively; (b) is an intermediate feedback case. The periodic spectral structure corresponds to the solitary laser Fabry–Perot étalon mode spacing. The arrows correspond to angles where the grating azimuthal angle was adjusted (see text).

Metrics