Abstract

A simple technique for steering the microwave radiation beam of a phased-array antenna is proposed and analyzed. Chromatic dispersion in equal-length fibers is used.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  2. G. A. Magel, J. M. Florence, G. C. Smith, “Phosphosilicate glass waveguides for phased array radar time delay,” in Optoelectronic Signal Processing for Phased Array Antennas III, B. M. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).
  3. C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).
  4. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber-optic delay-line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
    [CrossRef] [PubMed]
  5. E.-G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, Berlin, 1988), Fig. 5.17.
  6. R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
    [CrossRef]
  7. S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.
  8. C. C. Teng, M. G. Scaturo, T. K. Findakly, “Polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth and low drive voltage,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD5.
  9. L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications,2nd ed. (Dekker, New York, 1990), Figs. 4.3 and 4.4.
  10. J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.
  11. C. D. Poole, K. T. Nelson, J. M. Wiesenfeld, A. R. McCormick, “Broad-band dispersion compensation using the higher-order spatial-mode in a two-mode fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD13.

1992 (1)

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

1990 (1)

Alferness, R. C.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Antos, A. J.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Buhl, L. L.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Burrus, C. A.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Chen, Y.

S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.

Craig, D.

S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.

Davies, D. K.

Dugan, J. M.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Findakly, T. K.

C. C. Teng, M. G. Scaturo, T. K. Findakly, “Polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth and low drive voltage,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD5.

Florence, J. M.

G. A. Magel, J. M. Florence, G. C. Smith, “Phosphosilicate glass waveguides for phased array radar time delay,” in Optoelectronic Signal Processing for Phased Array Antennas III, B. M. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Goldberg, W.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Gopinath, A.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Goutzoulis, A. P.

Hall, D. W.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Hibbs-Brenner, M. K.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Jeunhomme, L. B.

L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications,2nd ed. (Dekker, New York, 1990), Figs. 4.3 and 4.4.

Kalweit, E.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Koch, T. L.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Koren, U.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Magel, G. A.

G. A. Magel, J. M. Florence, G. C. Smith, “Phosphosilicate glass waveguides for phased array radar time delay,” in Optoelectronic Signal Processing for Phased Array Antennas III, B. M. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Marta, T.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

McCormick, A. R.

C. D. Poole, K. T. Nelson, J. M. Wiesenfeld, A. R. McCormick, “Broad-band dispersion compensation using the higher-order spatial-mode in a two-mode fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD13.

Miller, B. I.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Mourou, G.

S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.

Mukherjee, S. D.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Murphy, E. F.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Nees, J.

S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.

Nelson, K. T.

C. D. Poole, K. T. Nelson, J. M. Wiesenfeld, A. R. McCormick, “Broad-band dispersion compensation using the higher-order spatial-mode in a two-mode fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD13.

Neumann, E.-G.

E.-G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, Berlin, 1988), Fig. 5.17.

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Poole, C. D.

C. D. Poole, K. T. Nelson, J. M. Wiesenfeld, A. R. McCormick, “Broad-band dispersion compensation using the higher-order spatial-mode in a two-mode fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD13.

Price, A. J.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Ramadan, M.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Raybon, G.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Scaturo, M. G.

C. C. Teng, M. G. Scaturo, T. K. Findakly, “Polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth and low drive voltage,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD5.

Smith, D. K.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Smith, G. C.

G. A. Magel, J. M. Florence, G. C. Smith, “Phosphosilicate glass waveguides for phased array radar time delay,” in Optoelectronic Signal Processing for Phased Array Antennas III, B. M. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Sullivan, C. T.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Teng, C. C.

C. C. Teng, M. G. Scaturo, T. K. Findakly, “Polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth and low drive voltage,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD5.

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Walterson, R.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

Wiesenfeld, J. M.

C. D. Poole, K. T. Nelson, J. M. Wiesenfeld, A. R. McCormick, “Broad-band dispersion compensation using the higher-order spatial-mode in a two-mode fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD13.

Williamson, S.

S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.

Wolf, D. L.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

Young, M. G.

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60, 3209–3211 (1992); see also “Widely tunable InGaAsP/InP laser based on a vertical coupler intracavity filter,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD2.
[CrossRef]

IEEE J. Lightwave Technol. (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased-array antenna using true time delay,” IEEE J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Other (8)

G. A. Magel, J. M. Florence, G. C. Smith, “Phosphosilicate glass waveguides for phased array radar time delay,” in Optoelectronic Signal Processing for Phased Array Antennas III, B. M. Hendrickson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Henderson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703 (to be published).

E.-G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, Berlin, 1988), Fig. 5.17.

S. Williamson, Y. Chen, J. Nees, D. Craig, G. Mourou, “Development of a multi-hundred-gigahertz electro-optic modulator and photodetector,” in Proceedings of the Department of Defense Fiber-Optic ConferenceArmed Forces Communications and Electronics Association, McLean, Va., 1992), pp. 271–274.

C. C. Teng, M. G. Scaturo, T. K. Findakly, “Polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth and low drive voltage,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD5.

L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications,2nd ed. (Dekker, New York, 1990), Figs. 4.3 and 4.4.

J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, D. W. Hall, “All optical, fiber-based 1550 nm dispersion compensation in a 10 Gbit/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD14.

C. D. Poole, K. T. Nelson, J. M. Wiesenfeld, A. R. McCormick, “Broad-band dispersion compensation using the higher-order spatial-mode in a two-mode fiber,” in Optical Fiber Communication Conference, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Variable-delay microwave–optical link.

Fig. 2
Fig. 2

Phased-array antenna system: λ-control, wavelength controller; OIC, optical integrated circuit; R-microprocessor, receiver microprocessor; T/R microprocessor, transmit–receive microprocessor; opto-MMIC, optical monolithic microwave integrated circuit; T/R’s, transmit–receive modules.

Metrics