Abstract

A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-μm-pixel CCD. Pixel response functions are derived from the MTF results.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).
  2. H. Thiry, “Resolving power of photographic materials as determined from interferometer patterns,” Photogr. Sci. Eng. 4, 19–22 (1960).
  3. F. Grum, “Modification and use of a Michelson interferometer to produce variable frequency sinusoidal patterns,” Photogr. Sci. Eng. 7, 96–104 (1963).
  4. R. Wolfe, F. Eisen, “The spatial photographic recording of fine interference phenomena,” J. Opt. Soc. Am. 40, 143–146 (1950).
    [CrossRef]
  5. M. J. Marchywka, D. G. Socker, “An MTF measurement technique for small pixel imagers,” in IEEE CCD Workshop, S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).
  6. Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography, Springer Series in Optical Sciences (Spring-Verlag, Berlin, 1980).
  7. J. C. Feltz, M. A. Karim, “Modulation transfer function of charge-coupled devices,” Appl. Opt. 29, 717–722 (1990).
    [CrossRef] [PubMed]
  8. T. James, ed., Theory of the Photographic Process (Macmillan, New York, 1977).
  9. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975).
  10. T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
    [CrossRef]
  11. T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
    [CrossRef]
  12. M. H. White, “Design of solid state imaging arrays,” in IEEE CCD Workshop,S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).
  13. T. S. Lomheim, “MTF of CCD imagers: utility, models, and measurement methods,” in IEEE CCD Workshop,S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).
  14. M. M. Bouke, D. A. Robinson, “A method for improving the spatial resolution of frontside illuminated CCD’s,” IEEE Trans. Electron Devices 28, 251–256 (1981).
    [CrossRef]
  15. E. G. Stevens, “A unified model of carrier diffusion and sampling aperture on MTF in solid-state image-sensors,” IEEE Trans. Electron Devices(to be published).
  16. S. G. Chamberlain, D. H. Harper, “MTF simulation including transmittance effects and experimental results of charge-coupled imagers,” IEEE Trans. Electron Devices ED-25, 145–155 (1978).
    [CrossRef]
  17. A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill Electronic Science Series (McGraw-Hill, New York, 1962).
  18. I. Gradshteyn, I. Ryzhik, eds., Table of Integrals, Series, and Products (Academic, San Diego, Calif., 1979).
  19. C. H. Sequin, M. F. Thompsett, Charge Transfer Devices,Advances in Electronics and Electron Physics (Academic, New York, 1975).
  20. T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
    [CrossRef]
  21. KAF-1400 Data Sheet (Eastman Kodak Company, Microelectronics Technology Division, Rochester, N. Y., May1991).
  22. T. Lee, Microelectronics Technology Division, Eastman Kodak Company, Rochester, N.Y. 14650-2008, (personal communication, 1991).
  23. E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  24. C. H. Sequin, “Interlacing in CCD imaging devices,” IEEE Trans. Electron. Devices 20, 535–541 (1973).
    [CrossRef]
  25. D. H. Seib, “Carrier diffusion degradation of MTF in CCD’s,” IEEE Trans. Elecron Devices ED-21, 210–217 (1974).
    [CrossRef]
  26. J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).
  27. N. Kristianpoller, D. B. Dutton, “Optical properties of lumogen—a phosphor for wavelength conversion,” Appl. Opt. 3, 287–292 (1964).
    [CrossRef]

1990 (4)

J. C. Feltz, M. A. Karim, “Modulation transfer function of charge-coupled devices,” Appl. Opt. 29, 717–722 (1990).
[CrossRef] [PubMed]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

1987 (1)

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

1981 (1)

M. M. Bouke, D. A. Robinson, “A method for improving the spatial resolution of frontside illuminated CCD’s,” IEEE Trans. Electron Devices 28, 251–256 (1981).
[CrossRef]

1978 (1)

S. G. Chamberlain, D. H. Harper, “MTF simulation including transmittance effects and experimental results of charge-coupled imagers,” IEEE Trans. Electron Devices ED-25, 145–155 (1978).
[CrossRef]

1974 (1)

D. H. Seib, “Carrier diffusion degradation of MTF in CCD’s,” IEEE Trans. Elecron Devices ED-21, 210–217 (1974).
[CrossRef]

1973 (1)

C. H. Sequin, “Interlacing in CCD imaging devices,” IEEE Trans. Electron. Devices 20, 535–541 (1973).
[CrossRef]

1964 (1)

1963 (1)

F. Grum, “Modification and use of a Michelson interferometer to produce variable frequency sinusoidal patterns,” Photogr. Sci. Eng. 7, 96–104 (1963).

1960 (1)

H. Thiry, “Resolving power of photographic materials as determined from interferometer patterns,” Photogr. Sci. Eng. 4, 19–22 (1960).

1950 (1)

Angione, J. R.

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

Asman, D. J.

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

Blouke, M.

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

Bouke, M. M.

M. M. Bouke, D. A. Robinson, “A method for improving the spatial resolution of frontside illuminated CCD’s,” IEEE Trans. Electron Devices 28, 251–256 (1981).
[CrossRef]

Butusov, M. M.

Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography, Springer Series in Optical Sciences (Spring-Verlag, Berlin, 1980).

Chamber, R. J.

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

Chamberlain, S. G.

S. G. Chamberlain, D. H. Harper, “MTF simulation including transmittance effects and experimental results of charge-coupled imagers,” IEEE Trans. Electron Devices ED-25, 145–155 (1978).
[CrossRef]

Collins, S.

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

Dutton, D. B.

Eisen, F.

Elliott, T.

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

Feltz, J. C.

Freeman, J.

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

Grum, F.

F. Grum, “Modification and use of a Michelson interferometer to produce variable frequency sinusoidal patterns,” Photogr. Sci. Eng. 7, 96–104 (1963).

Harper, D. H.

S. G. Chamberlain, D. H. Harper, “MTF simulation including transmittance effects and experimental results of charge-coupled imagers,” IEEE Trans. Electron Devices ED-25, 145–155 (1978).
[CrossRef]

Janesick, J.

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

Karim, M. A.

Keller, R. A.

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

Kristianpoller, N.

Lawrie, D. J.

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

Lee, T.

T. Lee, Microelectronics Technology Division, Eastman Kodak Company, Rochester, N.Y. 14650-2008, (personal communication, 1991).

Lomheim, T. L.

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

Lomheim, T. S.

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

T. S. Lomheim, “MTF of CCD imagers: utility, models, and measurement methods,” in IEEE CCD Workshop,S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

Luu, K. T.

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

Marchywka, M. J.

M. J. Marchywka, D. G. Socker, “An MTF measurement technique for small pixel imagers,” in IEEE CCD Workshop, S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975).

Ostrovskaya, G. V.

Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography, Springer Series in Optical Sciences (Spring-Verlag, Berlin, 1980).

Ostrovsky, Y. I.

Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography, Springer Series in Optical Sciences (Spring-Verlag, Berlin, 1980).

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Papoulis, A.

A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill Electronic Science Series (McGraw-Hill, New York, 1962).

Robinson, D. A.

M. M. Bouke, D. A. Robinson, “A method for improving the spatial resolution of frontside illuminated CCD’s,” IEEE Trans. Electron Devices 28, 251–256 (1981).
[CrossRef]

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975).

Schlegel, J. D.

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

Schumann, L. W.

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

Seib, D. H.

D. H. Seib, “Carrier diffusion degradation of MTF in CCD’s,” IEEE Trans. Elecron Devices ED-21, 210–217 (1974).
[CrossRef]

Sequin, C. H.

C. H. Sequin, “Interlacing in CCD imaging devices,” IEEE Trans. Electron. Devices 20, 535–541 (1973).
[CrossRef]

C. H. Sequin, M. F. Thompsett, Charge Transfer Devices,Advances in Electronics and Electron Physics (Academic, New York, 1975).

Shima, R. M.

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

Socker, D. G.

M. J. Marchywka, D. G. Socker, “An MTF measurement technique for small pixel imagers,” in IEEE CCD Workshop, S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

Stevens, E. G.

E. G. Stevens, “A unified model of carrier diffusion and sampling aperture on MTF in solid-state image-sensors,” IEEE Trans. Electron Devices(to be published).

Thiry, H.

H. Thiry, “Resolving power of photographic materials as determined from interferometer patterns,” Photogr. Sci. Eng. 4, 19–22 (1960).

Thompsett, M. F.

C. H. Sequin, M. F. Thompsett, Charge Transfer Devices,Advances in Electronics and Electron Physics (Academic, New York, 1975).

Thompson, J. S.

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

Thomson, J. S.

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

Warren, D. W.

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

White, M. H.

M. H. White, “Design of solid state imaging arrays,” in IEEE CCD Workshop,S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

Wolfe, R.

Woodward, W. F.

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Elecron Devices (1)

D. H. Seib, “Carrier diffusion degradation of MTF in CCD’s,” IEEE Trans. Elecron Devices ED-21, 210–217 (1974).
[CrossRef]

IEEE Trans. Electron Devices (2)

M. M. Bouke, D. A. Robinson, “A method for improving the spatial resolution of frontside illuminated CCD’s,” IEEE Trans. Electron Devices 28, 251–256 (1981).
[CrossRef]

S. G. Chamberlain, D. H. Harper, “MTF simulation including transmittance effects and experimental results of charge-coupled imagers,” IEEE Trans. Electron Devices ED-25, 145–155 (1978).
[CrossRef]

IEEE Trans. Electron. Devices (1)

C. H. Sequin, “Interlacing in CCD imaging devices,” IEEE Trans. Electron. Devices 20, 535–541 (1973).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

T. L. Lomheim, R. M. Shima, J. R. Angione, W. F. Woodward, D. J. Asman, R. A. Keller, L. W. Schumann, “Imaging CCD transient response to 17- and 50-MeV proton and heavy ion radiation,” IEEE Trans. Nucl. Sci. 37, 1876–1885 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (3)

J. Janesick, T. Elliott, S. Collins, M. Blouke, J. Freeman, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–714 (1987).

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thomson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned tdi charge-coupled imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

T. S. Lomheim, L. W. Schumann, R. M. Shima, J. S. Thompson, W. F. Woodward, “Electro-optical hardware considerations in measuring the imaging capability of scanned time delay and integrate CCD imagers,” Opt. Eng. 29, 911–927 (1990).
[CrossRef]

Photogr. Sci. Eng. (2)

H. Thiry, “Resolving power of photographic materials as determined from interferometer patterns,” Photogr. Sci. Eng. 4, 19–22 (1960).

F. Grum, “Modification and use of a Michelson interferometer to produce variable frequency sinusoidal patterns,” Photogr. Sci. Eng. 7, 96–104 (1963).

Other (14)

M. J. Marchywka, D. G. Socker, “An MTF measurement technique for small pixel imagers,” in IEEE CCD Workshop, S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography, Springer Series in Optical Sciences (Spring-Verlag, Berlin, 1980).

R. J. Chamber, D. W. Warren, D. J. Lawrie, T. S. Lomheim, K. T. Luu, R. M. Shima, J. D. Schlegel, “Reimaging system for evaluating high-resolution CCD arrays,” in Symposium on Optical Engineering and Aerospace Sensing, G. C. Holst, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1488, 312–326 (1991).

M. H. White, “Design of solid state imaging arrays,” in IEEE CCD Workshop,S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

T. S. Lomheim, “MTF of CCD imagers: utility, models, and measurement methods,” in IEEE CCD Workshop,S. G. Chamberlain, ed. (Institute of Electrical and Electronic Engineers, New York, 1991).

E. G. Stevens, “A unified model of carrier diffusion and sampling aperture on MTF in solid-state image-sensors,” IEEE Trans. Electron Devices(to be published).

T. James, ed., Theory of the Photographic Process (Macmillan, New York, 1977).

A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975).

KAF-1400 Data Sheet (Eastman Kodak Company, Microelectronics Technology Division, Rochester, N. Y., May1991).

T. Lee, Microelectronics Technology Division, Eastman Kodak Company, Rochester, N.Y. 14650-2008, (personal communication, 1991).

E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill Electronic Science Series (McGraw-Hill, New York, 1962).

I. Gradshteyn, I. Ryzhik, eds., Table of Integrals, Series, and Products (Academic, San Diego, Calif., 1979).

C. H. Sequin, M. F. Thompsett, Charge Transfer Devices,Advances in Electronics and Electron Physics (Academic, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental apparatus schematic diagram. Shutter S3 times all imager exposures. Shutters S1 and S2 are set before openning S3. Mirrors M1 and M2 are positioned to intercept the primary maximum from spatial filter SF1. M1 and M2 are adjusted to establish fs and grating orientation on the CCD. Baffling to eliminate stray light and air currents is not shown.

Fig. 2
Fig. 2

Two typical amplitude spectra showing the variation in sidebands that occurs. (A) Sidebands indicative of amplitude modulation are present. (B) All spectral power is clearly in one frequency bin. A band of noise in the 125–135-cycle/mm region is noted. Bandwidth reduction removes these components from the MTF calculation. The dc component, aliased to 150 cycles/mm, is also shown here. The magnitude shown is larger than was typically observed.

Fig. 3
Fig. 3

MTF degradation as a full well is approached. The relative MTF is plotted versus the signal level. Aliased second (dotted–dashed curve) and third harmonics (dashed curve) are generated as the bright half of the grating pattern blooms. At higher signal levels all pixels begin to bloom and only a dc component remains. At this frequency the MTF at 15,000e is ~40%. With a 30,000-electron average pixels contain ~45,000 electrons. (B) A spectrum showing the fundamental pattern at ≈66 cycles/mm and the signal the brightest at 18 and 46 cycles/mm, respectively. We speculate that the falloff in MTF below blooming is due to the shrinking depletion layer thickness and consequent increase in charge diffusion between pixels

Fig. 4
Fig. 4

MTF showing the effect of (A) a gate structure and (B) a uniform aperture. The plateau in the horizontal response clearly indicates high-frequency components in the PRF. No data points were deleted, and the random error is near expectations. Three separate experimental geometries were used to generate vertical data with overlap in the 50–110-cycle/mm region. The horizontal data above 120 cycles/mm consist of three separate experimental results.

Fig. 5
Fig. 5

(A) Fit to the horizontal MTF at 514.5 nm and (B) the resulting PRF. A central null in the PRF is observed, presumably where the two phase lines overlap. However, no nulls are detectable at the pixel edges, where the gates also overlap.

Fig. 6
Fig. 6

Fit to the vertical MTF at 514.5 nm. (A) The analytical fit to data plotted over experimental points showing the quality of the fit at high and low frequencies. (B) The PRF is consistent with known device parameters.

Fig. 7
Fig. 7

Fit to vertical MTF at 514.5 nm with a Lumogen coating. Although the experimental data (A) have been greatly extrapolated to produce the PRF (B), the resulting PRF demonstrates increased scattering relative to the PRF obtained from an uncoated device.

Fig. 8
Fig. 8

Fit to vertical MTF at 488 nm. The fit to data plotted over experimental points on a log scale shows a small deviation from the fit at higher spatial frequencies.

Fig. 9
Fig. 9

Vertical MTF fit at 472.9 nm. We needed little dc component to achieve this fit. Some deviation is noted at ~110 cycles/mm, but elsewhere good agreement is achieved.

Fig. 10
Fig. 10

Vertical MTF at 632.8 nm. These results are subject to greater error than the green and blue results obtained with the argon laser. However, a greatly decreased MTF for frequencies above the Nyquist frequency is noted. The smooth curve is a model result supplied by Eastman Kodak.

Tables (1)

Tables Icon

Table 1 Extraneous Factors Known to Affect MTF Results and Overall Expected Noise and Biasa

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = a 1 2 + a 2 2 + 2 a 1 a 2 × cos [ r · ( k 1 - k 2 ) - ( δ 1 - δ 2 ) ] ,
f s = Δ k 2 π .
F ( n ) = I ( n ) - A 1 ( n ) - A 2 ( n ) [ A 1 ( n ) A 2 ( n ) ] 1 / 2 ,
P ( n ) = - PRF n ( x ) exp ( i k s x ) d x ,
PRF n ( x ) = PRF o ( x - a n ) ,
P ( k ) = n = 0 N - 1 P ( n ) exp ( i k n a ) .
P ( k ) = PRF ( k s ) sin [ a ( k - k s ) N / 2 ] sin [ a ( k - k s ) ] ,
MTF ( k s ) = P max - P min P max + P min ,
P n n = - a - PRF o ( x - a n ) sin ( k s x ) d x .
- PRF o ( x ) d x ,
MTF ( k s ) = - PRF o ( x - a n max ) sin ( k s x ) d x - PRF o ( x ) d x = PRF ( k s ) ,
η = 2 r 1 r 2 r 1 2 + r 2 2 ,
η = f 2 ( ω ) exp ( i ω Δ r / c ) d ω ,
η = exp ( - Δ r 2 2 l c 2 ) .
e ^ 1 · e ^ 2 = e 1 z e 2 z + e 1 x e 2 x + e 1 y e 2 y = e 1 y e 2 y + e 1 x e 2 x ( 1 + k x 1 k x 2 / k z 1 k z 2 ) .
F = I - A 1 - A 2 - Δ 1 - Δ 2 [ ( A 1 + Δ 1 ) ( A 2 + Δ 2 ) ] 1 / 2 ,
F = I - 2 A [ ( A + Δ ) ( A - Δ ) ] 1 / 2 = I - 2 A ( A 2 - Δ 2 ) 1 / 2 = I - 2 A A [ 1 - ( Δ / A ) 2 ] 1 / 2 ,
Δ 1 + Δ 2 [ ( A 1 + Δ 1 ) ( A 2 + Δ 2 ) ] 1 / 2
P = n peak - b n peak + b F 2 ( k i ) ,
MTF ( k s ) = - A ( x ) B ( x ) exp ( i k s x ) d x .
MTF ( k s ) = - A ( x ) exp ( i k s x ) d x - B ( x ) exp ( i k s x ) d x .
PRF ( x ) = 1 1 + ( x / l ) n .
exp [ - k l ( 2 ) ] { cos [ k l / ( 2 ) ] + sin [ k l / ( 2 ) ] }
k l = ( 2 ) ( 3 π 4 + n π ) .
0.5 { 2 exp ( - k l / 2 ) sin [ π / 6 + k l ( 3 ) / 2 ] + exp ( - k l ) }
sin ( π / 6 + k l ( 3 ) / 2 ) = exp ( - k l / 2 ) .
PRF ( x ) = i = 0 m C i 1 + [ ( x - x o i ) / l i ] n i .
MTF CTE = exp { - n [ 1 - cos ( π f s / f n ) ] } ,
PRF ( y ) = [ 1 1 + ( y / 3.17 ) 4.9 - 0.8 1 + ( y / 0.244 ) 4.9 + 0.001 ] × [ 1 + 0.45 × sgn ( y ) ] .
PRF ( x ) = 1 1 + ( x / 2.92 ) 4.9 + 0.0007.
PRF ( x ) = 1 1 + ( x / 3.17 ) 2.9 + 0.0012.
PRF ( x ) = 1 1 + ( x / 3.05 ) 6.5 + 0.0009.
PRF ( x ) = 1 1 + ( x / 3.17 ) 9 + 0.15 1 + ( x / 3.53 ) 2.3 + 0.00005.

Metrics