Abstract

A hybrid modeling technique is reported for studying inelastic (Raman and fluorescent) scattering from molecules embedded in spherical particles of large optical size parameters. The modeling technique, which combines the Lorenz–Mie theory (for determination of the incident excitation field) with a geometric optics formulation (for determination of an inelastic-scattering efficiency function), permits predictions of a weighting function inside a particle and also the angular scattering patterns. These calculations provide insight into the scattering processes and may serve as a theoretical basis for guiding experiments and interpreting results in aerosol particle thermometry by using inelastic-scattering techniques.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription