Abstract

Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  2. Issue on “First ISCCP regional experiment (FIRE),” Mon. Weather Rev. 118(11) (1990).
  3. D. Hennings, M. Quante, R. Sefzig, “ICE—International Cirrus Experiment—1989 Field Phase Report” (Institut fur Geophysik und Meteorologie, Universität zu Köln, Köln, Germany, 1990).
  4. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef] [PubMed]
  5. J. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature (London) 224, 1098–1099 (1969).
    [CrossRef]
  6. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
    [CrossRef] [PubMed]
  7. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
    [CrossRef]
  8. J. D. Klett, “Stable analytic inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  9. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  10. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscatter ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
    [CrossRef] [PubMed]
  11. W. Hitschfeld, J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Meteorol. 11, 58–67 (1954).
    [CrossRef]
  12. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  13. C. J. Grund, E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution lidar,” Mon. Weather Rev. 118, 2344–2355 (1990).
    [CrossRef]
  14. M. Riebesell, “Raman-Lidar zur Fernmessung von Wasserdampf-und Kohlendioxid-Höhenprofilen in der Troposphäre,” Ph.D. dissertation, rep. GKSS 90/E/13 (1990) (Universität Hamburg, Hamburg, Germany, 1990).
  15. U. Wandinger, “Entwicklung und Erprobung eines Filterpolychromators für ein Raman-Lidar,” Diplomarbeit, rep. GKSS 90/E/48 1990 (Fachbereich Physik, Universität Hamburg, Hamburg, Germany, 1990).
  16. D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955) p. 785.
  17. J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).
  18. D. A. Leonard, B. Caputo, “A single-ended atmospheric transmissometer,” Opt. Eng. 13, 10–14 (1974).
  19. H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).
  20. L. V. Kravets, “On the restoration of profiles of some optical parameters of cirrus clouds using lidar techniques,” Atmos. Opt. 2, 146–148 (1989).
  21. V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).
  22. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 414–439.
  23. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14501–14508 (1986).
    [CrossRef]
  24. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.
  25. P. B. Russel, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
  26. B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidars,” Appl. Opt. 27, 3299–3305 (1988).
    [CrossRef] [PubMed]
  27. M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
    [CrossRef] [PubMed]
  28. F. A. Theopold, J. Bösenberg, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference (Istituto di Ricerca sulle Onde Elettromagnetiche, Comitato Nazionale per le Scienze, Florence, Italy, 1988), pp. 209–211.
  29. E. W. Eloranta, S. T. Shipley, “A solution for multiple scattering,” in Atmospheric Aerosols—Their Formation, Optical Properties, and Effects, A. Deepak, ed. (Spectrum, Hampton, Va., 1982), pp. 227–239.
  30. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds—part I: single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  31. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
    [CrossRef]
  32. K. Jayaweera, B. J. Mason, “The behaviour of free falling cylinders and cones in a viscous fluid,” J. Fluid Mech. 22, 709–720 (1965).
    [CrossRef]
  33. C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol, 17, 482–488 (1978).
    [CrossRef]
  34. L. Thomas, J. C. Cartwright, D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42b, 211–216 (1990).
  35. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  36. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
    [CrossRef] [PubMed]
  37. C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
    [CrossRef]
  38. A. J. Heymsfield, “Cirrus uncinus generating cells and the evolution of cirriform clouds,” J. Atmos. Sci. 32, 799–808 (1975).
    [CrossRef]
  39. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [CrossRef]
  40. Q. Cai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
    [CrossRef] [PubMed]
  41. C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
    [CrossRef]
  42. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
    [CrossRef]
  43. R. G. Oraltay, J. Hallett, “Evaporation and melting of ice crystals: a laboratory study,” Atmos. Res. 24, 169–189 (1989).
    [CrossRef]
  44. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
    [CrossRef]
  45. R. H. Dubinsky, A. I. Carswell, S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1621 (1985).
    [CrossRef] [PubMed]
  46. K. Sassen, G. C. Dodd, “Homogeneous nucleation rate for highly supercooled cirrus cloud droplets,” J. Atmos. Sci. 45, 1357–1369 (1988).
    [CrossRef]
  47. A. Asano, “Transfer of solar radiation in optically anisotropic ice clouds,” J. Meteorol. Soc. Jpn. 61, 402–413 (1983).

1990

Issue on “First ISCCP regional experiment (FIRE),” Mon. Weather Rev. 118(11) (1990).

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

C. J. Grund, E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution lidar,” Mon. Weather Rev. 118, 2344–2355 (1990).
[CrossRef]

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

L. Thomas, J. C. Cartwright, D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42b, 211–216 (1990).

1989

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds—part I: single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

L. V. Kravets, “On the restoration of profiles of some optical parameters of cirrus clouds using lidar techniques,” Atmos. Opt. 2, 146–148 (1989).

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

R. G. Oraltay, J. Hallett, “Evaporation and melting of ice crystals: a laboratory study,” Atmos. Res. 24, 169–189 (1989).
[CrossRef]

1988

K. Sassen, G. C. Dodd, “Homogeneous nucleation rate for highly supercooled cirrus cloud droplets,” J. Atmos. Sci. 45, 1357–1369 (1988).
[CrossRef]

B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidars,” Appl. Opt. 27, 3299–3305 (1988).
[CrossRef] [PubMed]

1987

M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
[CrossRef] [PubMed]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

1986

L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
[CrossRef] [PubMed]

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14501–14508 (1986).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

1985

1984

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

1983

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

A. Asano, “Transfer of solar radiation in optically anisotropic ice clouds,” J. Meteorol. Soc. Jpn. 61, 402–413 (1983).

1982

1981

1979

P. B. Russel, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).

C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
[CrossRef]

1978

C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol, 17, 482–488 (1978).
[CrossRef]

1976

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

1975

A. J. Heymsfield, “Cirrus uncinus generating cells and the evolution of cirriform clouds,” J. Atmos. Sci. 32, 799–808 (1975).
[CrossRef]

1974

D. A. Leonard, B. Caputo, “A single-ended atmospheric transmissometer,” Opt. Eng. 13, 10–14 (1974).

H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).

1972

S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

1969

J. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature (London) 224, 1098–1099 (1969).
[CrossRef]

1965

K. Jayaweera, B. J. Mason, “The behaviour of free falling cylinders and cones in a viscous fluid,” J. Fluid Mech. 22, 709–720 (1965).
[CrossRef]

1954

W. Hitschfeld, J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Meteorol. 11, 58–67 (1954).
[CrossRef]

Ansmann, A.

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Arshinov, I. F.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Asano, A.

A. Asano, “Transfer of solar radiation in optically anisotropic ice clouds,” J. Meteorol. Soc. Jpn. 61, 402–413 (1983).

Bissonnette, L. R.

Bobrovnikov, S. M.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Bordan, J.

W. Hitschfeld, J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Meteorol. 11, 58–67 (1954).
[CrossRef]

Bösenberg, J.

F. A. Theopold, J. Bösenberg, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference (Istituto di Ricerca sulle Onde Elettromagnetiche, Comitato Nazionale per le Scienze, Florence, Italy, 1988), pp. 209–211.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Browell, E. V.

Cai, Q.

Caputo, B.

D. A. Leonard, B. Caputo, “A single-ended atmospheric transmissometer,” Opt. Eng. 13, 10–14 (1974).

Carswell, A. I.

Cartwright, J. C.

L. Thomas, J. C. Cartwright, D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42b, 211–216 (1990).

Chylek, P.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Cooney, J.

J. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature (London) 224, 1098–1099 (1969).
[CrossRef]

Dilley, A. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

Dodd, G. C.

K. Sassen, G. C. Dodd, “Homogeneous nucleation rate for highly supercooled cirrus cloud droplets,” J. Atmos. Sci. 45, 1357–1369 (1988).
[CrossRef]

Dubinsky, R. H.

Eloranta, E. W.

C. J. Grund, E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution lidar,” Mon. Weather Rev. 118, 2344–2355 (1990).
[CrossRef]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

E. W. Eloranta, S. T. Shipley, “A solution for multiple scattering,” in Atmospheric Aerosols—Their Formation, Optical Properties, and Effects, A. Deepak, ed. (Spectrum, Hampton, Va., 1982), pp. 227–239.

Elouragini, S.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Evans, B. T. N.

Evans, D. R.

D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955) p. 785.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.

Fernald, F. G.

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

Flamant, P. H.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.

Grandy, W. T.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Grigorov, I. V.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Grund, C. J.

C. J. Grund, E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution lidar,” Mon. Weather Rev. 118, 2344–2355 (1990).
[CrossRef]

Hallett, J.

R. G. Oraltay, J. Hallett, “Evaporation and melting of ice crystals: a laboratory study,” Atmos. Res. 24, 169–189 (1989).
[CrossRef]

Ham, C.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Hart, W. D.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

Hennings, D.

D. Hennings, M. Quante, R. Sefzig, “ICE—International Cirrus Experiment—1989 Field Phase Report” (Institut fur Geophysik und Meteorologie, Universität zu Köln, Köln, Germany, 1990).

Herman, B. M.

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

Hermann, H.

H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).

Heymsfield, A. J.

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

A. J. Heymsfield, “Cirrus uncinus generating cells and the evolution of cirriform clouds,” J. Atmos. Sci. 32, 799–808 (1975).
[CrossRef]

Hitschfeld, W.

W. Hitschfeld, J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Meteorol. 11, 58–67 (1954).
[CrossRef]

Ismail, S.

Jayaweera, K.

K. Jayaweera, B. J. Mason, “The behaviour of free falling cylinders and cones in a viscous fluid,” J. Fluid Mech. 22, 709–720 (1965).
[CrossRef]

Jennings, S. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Klapheck, K. H.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Klett, J. D.

Kravets, L. V.

L. V. Kravets, “On the restoration of profiles of some optical parameters of cirrus clouds using lidar techniques,” Atmos. Opt. 2, 146–148 (1989).

Kunkel, K. E.

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

Leonard, D. A.

D. A. Leonard, B. Caputo, “A single-ended atmospheric transmissometer,” Opt. Eng. 13, 10–14 (1974).

Linne, H.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Liou, K. N.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds—part I: single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Q. Cai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
[CrossRef] [PubMed]

Loth, C.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Mason, B. J.

K. Jayaweera, B. J. Mason, “The behaviour of free falling cylinders and cones in a viscous fluid,” J. Fluid Mech. 22, 709–720 (1965).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.

McCormick, M. P.

Melfi, S. H.

Menenger, L.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Michaelis, W.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Milton, M. J. T.

Mitev, V. M.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Moerl, P.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14501–14508 (1986).
[CrossRef]

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14501–14508 (1986).
[CrossRef]

Oraltay, R. G.

R. G. Oraltay, J. Hallett, “Evaporation and melting of ice crystals: a laboratory study,” Atmos. Res. 24, 169–189 (1989).
[CrossRef]

Orr, J.

J. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature (London) 224, 1098–1099 (1969).
[CrossRef]

Pal, S. R.

Pantani, L.

H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).

Pelon, J.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Pinnick, R. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
[CrossRef]

C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol, 17, 482–488 (1978).
[CrossRef]

Quante, M.

D. Hennings, M. Quante, R. Sefzig, “ICE—International Cirrus Experiment—1989 Field Phase Report” (Institut fur Geophysik und Meteorologie, Universität zu Köln, Köln, Germany, 1990).

Reagan, J. A.

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

Renger, W.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Riebesell, M.

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

M. Riebesell, “Raman-Lidar zur Fernmessung von Wasserdampf-und Kohlendioxid-Höhenprofilen in der Troposphäre,” Ph.D. dissertation, rep. GKSS 90/E/13 (1990) (Universität Hamburg, Hamburg, Germany, 1990).

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Roesler, F. L.

Russel, P. B.

Sasano, Y.

Sassen, K.

K. Sassen, G. C. Dodd, “Homogeneous nucleation rate for highly supercooled cirrus cloud droplets,” J. Atmos. Sci. 45, 1357–1369 (1988).
[CrossRef]

Scott, J. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

Sefzig, R.

D. Hennings, M. Quante, R. Sefzig, “ICE—International Cirrus Experiment—1989 Field Phase Report” (Institut fur Geophysik und Meteorologie, Universität zu Köln, Köln, Germany, 1990).

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.

Senff, C.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Shipley, S. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

E. W. Eloranta, S. T. Shipley, “A solution for multiple scattering,” in Atmospheric Aerosols—Their Formation, Optical Properties, and Effects, A. Deepak, ed. (Spectrum, Hampton, Va., 1982), pp. 227–239.

Simeonov, V. B.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Spinhirne, J. D.

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

Sroga, J. T.

Stefanutti, L.

H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).

Swissler, T. J.

Takano, Y.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds—part I: single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Theopold, F. A.

F. A. Theopold, J. Bösenberg, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference (Istituto di Ricerca sulle Onde Elettromagnetiche, Comitato Nazionale per le Scienze, Florence, Italy, 1988), pp. 209–211.

Thomas, L.

L. Thomas, J. C. Cartwright, D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42b, 211–216 (1990).

Thro, P.-Y.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Tomasetti, C.

J. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature (London) 224, 1098–1099 (1969).
[CrossRef]

Tracy, D. H.

Trauger, J. T.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 414–439.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.

Wandinger, U.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

U. Wandinger, “Entwicklung und Erprobung eines Filterpolychromators für ein Raman-Lidar,” Diplomarbeit, rep. GKSS 90/E/48 1990 (Fachbereich Physik, Universität Hamburg, Hamburg, Germany, 1990).

Wareing, D. P.

L. Thomas, J. C. Cartwright, D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42b, 211–216 (1990).

Weinman, J. A.

Weitkamp, C.

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Werner, C.

H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).

Woods, P. T.

Alta Freq.

H. Hermann, L. Pantani, L. Stefanutti, C. Werner, “Lidar measurements of the atmospheric visibility,” Alta Freq. 43, 732-468E–735-471E (1974).

Appl. Opt.

S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

P. B. Russel, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).

J. D. Klett, “Stable analytic inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

Q. Cai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

R. H. Dubinsky, A. I. Carswell, S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1621 (1985).
[CrossRef] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscatter ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
[CrossRef] [PubMed]

L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
[CrossRef] [PubMed]

M. J. T. Milton, P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
[CrossRef] [PubMed]

B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidars,” Appl. Opt. 27, 3299–3305 (1988).
[CrossRef] [PubMed]

Atmos. Opt.

L. V. Kravets, “On the restoration of profiles of some optical parameters of cirrus clouds using lidar techniques,” Atmos. Opt. 2, 146–148 (1989).

Atmos. Res.

R. G. Oraltay, J. Hallett, “Evaporation and melting of ice crystals: a laboratory study,” Atmos. Res. 24, 169–189 (1989).
[CrossRef]

Bulg. J. Phys.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, I. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

J. Appl. Meteorol

C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol, 17, 482–488 (1978).
[CrossRef]

J. Appl. Meteorol.

C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
[CrossRef]

F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
[CrossRef]

J. Atmos. Sci.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds—part I: single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

A. J. Heymsfield, “Cirrus uncinus generating cells and the evolution of cirriform clouds,” J. Atmos. Sci. 32, 799–808 (1975).
[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

K. Sassen, G. C. Dodd, “Homogeneous nucleation rate for highly supercooled cirrus cloud droplets,” J. Atmos. Sci. 45, 1357–1369 (1988).
[CrossRef]

J. Fluid Mech.

K. Jayaweera, B. J. Mason, “The behaviour of free falling cylinders and cones in a viscous fluid,” J. Fluid Mech. 22, 709–720 (1965).
[CrossRef]

J. Geophys. Res.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14501–14508 (1986).
[CrossRef]

C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11151–11164 (1989).
[CrossRef]

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

J. Meteorol.

W. Hitschfeld, J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Meteorol. 11, 58–67 (1954).
[CrossRef]

J. Meteorol. Soc. Jpn.

A. Asano, “Transfer of solar radiation in optically anisotropic ice clouds,” J. Meteorol. Soc. Jpn. 61, 402–413 (1983).

Mon. Weather Rev.

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Issue on “First ISCCP regional experiment (FIRE),” Mon. Weather Rev. 118(11) (1990).

C. J. Grund, E. W. Eloranta, “The 27–28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution lidar,” Mon. Weather Rev. 118, 2344–2355 (1990).
[CrossRef]

Nature (London)

J. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscatter,” Nature (London) 224, 1098–1099 (1969).
[CrossRef]

Opt. Eng.

D. A. Leonard, B. Caputo, “A single-ended atmospheric transmissometer,” Opt. Eng. 13, 10–14 (1974).

Opt. Lett.

Tellus

L. Thomas, J. C. Cartwright, D. P. Wareing, “Lidar observations of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42b, 211–216 (1990).

Other

M. Riebesell, “Raman-Lidar zur Fernmessung von Wasserdampf-und Kohlendioxid-Höhenprofilen in der Troposphäre,” Ph.D. dissertation, rep. GKSS 90/E/13 (1990) (Universität Hamburg, Hamburg, Germany, 1990).

U. Wandinger, “Entwicklung und Erprobung eines Filterpolychromators für ein Raman-Lidar,” Diplomarbeit, rep. GKSS 90/E/48 1990 (Fachbereich Physik, Universität Hamburg, Hamburg, Germany, 1990).

D. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955) p. 785.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linne, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” MPI rep. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 414–439.

D. Hennings, M. Quante, R. Sefzig, “ICE—International Cirrus Experiment—1989 Field Phase Report” (Institut fur Geophysik und Meteorologie, Universität zu Köln, Köln, Germany, 1990).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), pp. 14-1–14-64.

F. A. Theopold, J. Bösenberg, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference (Istituto di Ricerca sulle Onde Elettromagnetiche, Comitato Nazionale per le Scienze, Florence, Italy, 1988), pp. 209–211.

E. W. Eloranta, S. T. Shipley, “A solution for multiple scattering,” in Atmospheric Aerosols—Their Formation, Optical Properties, and Effects, A. Deepak, ed. (Spectrum, Hampton, Va., 1982), pp. 227–239.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Particle extinction coefficient measured with a Raman lidar on (a) 24 October 1989 between 1809 and 1821 local time (lt) and on (b) 5 September 1989 between 2153 and 2219 lt. The solid curve of the particle extinction coefficient is calculated by using actual radiosonde data of temperature (right-hand side, solid curve) and pressure. The dashed curve is obtained by assuming standard-atmosphere conditions for temperature (right-hand side, dashed curve) and pressure. The Rayleigh extinction coefficient (dotted curve) is shown for comparison. The discontinuities at 2.4 km and 8.1 km in (a) and at 2.1 km and 3.9 km in (b) reflect the change of the gliding average window length Δz in the smoothing of the corrected signal profile and in the calculation with Eq. (7) from 180 to 600 m and back to 300 m and from 120 to 300 m and 600 m, respectively. The apparent resolution results from a gliding calculation step width of 60 m.

Fig. 2
Fig. 2

Modeled error of the extinction coefficient caused by averaging of Raman backscatter signals measured during a time period Δt of strongly varying particle extinction conditions. (a) Simulated particle extinction for the first (dotted line) and second half (dashed curve) of the total sampling period Δt = Δt1 + Δt2. (b) Particle transmissions calculated from the extinction profiles shown in (a) for the two-way path from the lidar to the backscatter height [see Raman lidar equation (2)]; individual transmissions for Δt1 (dotted line) and Δt2 (dashed curve), and averaged transmission profile (solid curve). In a lidar measurement the mean transmission profile is derived from the averaged Raman backscatter signal profile measured during the total sampling interval Δt. (c) Particle extinction coefficient determined from the mean transmission profile for the period Δt after Eq. (7) (solid curve), and the true mean extinction coefficient calculated from the individual transmission profiles for Δt1 and Δt2 (dashed curve). Range resolution Δz = 100 m. (d) Relative error of the derived particle extinction coefficient.

Fig. 3
Fig. 3

Cirrus particle extinction and backscatter coefficients and the corresponding extinction-to-backscatter ratio for λ0 = 308 nm, determined on 24 October 1989 between 1809 and 1821 lt. An ozone density profile according to the standard ozone model for midlatitude conditions is assumed in the case of the solid curve. The dotted and dashed curves are determined by assuming zero ozone density and an ozone concentration that is a factor of 2 higher than the standard model content, respectively.

Fig. 4
Fig. 4

Bernoulli solutions obtained by applying forward (dashed curve) and backward integration (solid curve) and by assuming a range-independent lidar ratio of Sλ0aer = (a) 10, (b) 13, (c) 16, and (d) 19 sr. The measured elastic-backscatter data are the same as those in Fig. 3.

Fig. 5
Fig. 5

Particle extinction coefficient determined by the inversion method [Eq. (6); near-end solution, dashed curve; far-end solution, solid curve] for the optimum range-independent lidar ratio Sλ0aer = 15.7 sr. For this extinction-to-backscatter ratio the near- and remote-end solutions coincide approximately. The particle extinction profile derived from the Raman signals is shown for comparison (dotted curve, see Fig. 3).

Fig. 6
Fig. 6

Modeled particle extinction coefficients determined from elastic-backscatter signals measured during a time period of strongly varying particle extinction conditions. (a) Assumed particle extinctions during the first (dotted curve) and second (dashed curve) halves of the total sampling period Δt = Δt1 + Δt2. For simplicity, molecular scattering and extinction are neglected. (b) Range-corrected elastic-backscatter signal assuming Kλ0O(z) = 1 in the lidar equation (1). The profiles for the time sections Δt1 (dotted curve) and Δt2 (dashed curve) are calculated with the extinction coefficients shown in (a) and an aerosol lidar ratio of 20 sr. The solid curve is obtained by averaging the profiles for Δt1 and Δt2. (c) Particle backscatter coefficient determined from the mean corrected signal profile [(b), solid curve] by using the Klett method in the forward (dashed curve) and backward (solid curve) integration mode. The reference heights are z0 = 100 m (forward integration) and 1400 m (backward integration). The correct boundary value of 0.2 km−1 and the correct lidar ratio are taken for the retrieval. The calculation step width is Δz = 100 m. The corresponding true mean extinction profile according to (a) is shown for comparison (dotted curve). (d) Relative error of the particle extinction coefficients derived by applying forward (dashed curve) and backward (solid curve) integration.

Fig. 7
Fig. 7

Particle extinction and backscatter coefficients and the corresponding lidar ratio determined in a cirrostratus cloud on 24 October 1989 between 1854 and 2042 lt. 725,600 laser shots are averaged. Signal smoothing lengths are Δz = 600 m for z < 10.5 km and 300 m for z ≥ 10.5 km. Rayleigh extinction and backscatter coefficients (dotted curves) are shown for comparison.

Fig. 8
Fig. 8

Cirrus scattering properties determined with a combined lidar in a cirrus cloud on 20 September 1989 between 0447 and 0456 lt. 98,358 laser shots are averaged. Signal smoothing length is Δz = 300 m. Profiles of Rayleigh extinction and backscattering (dotted curves) are also plotted.

Fig. 9
Fig. 9

Particle backscatter coefficient and extinction-to-backscatter ratio determined in a cirrus cloud on 13 October 1989 at 2119 (dashed curves) and 2138 lt (solid curves). 107,099 and 21,528 laser shots sampled in 10 min and 2 min are averaged, respectively. The data smoothing length is Δz = 360 m. The Rayleigh backscatter coefficient is given by a dotted curve.

Fig. 10
Fig. 10

Particle extinction coefficient and extinction-to-backscatter ratio determined in an altostratus cloud on 24 October 1989 at 2225 lt. 18,140 laser shots sampled in 2 min are averaged. Spatial resolution is 60 m. The comparably small Rayleigh extinction coefficient is given by the dotted curve.

Fig. 11
Fig. 11

Particle extinction coefficient (right) and resulting optical depth (left) determined from the elastic-backscatter signal at 308 nm by using the Klett method in the forward (dashed curve) and backward integration mode (solid curve). The measured data are the same as those in Fig. 8. A range-independent lidar ratio of Sλ0aer = 7.3 sr is assumed. For this lidar ratio the near-end and far-end solution coincide approximately. For comparison (dotted curves) the particle extinction profile and the corresponding optical depth determined after the Raman lidar method are also shown.

Fig. 12
Fig. 12

Bernoulli solutions applying forward (dashed curve) and backward (solid curve) integration. The lidar measurement was taken in a cirrostratus deck on 18 October 1989 between 1129 and 1144 lt. Approximately 6,300 laser shots are averaged for each profile sampled in 150 s. Spatial resolution is 60 m. A lidar ratio Sλ0aer = 13 sr is selected. This lidar ratio can be seen to be appropriate in cases (c) and (d) only.

Fig. 13
Fig. 13

Time series of cirrus top and base heights [(a), solid curve], the height at which the backscatter coefficient takes its maximum [dashed curve in (a)], cloud optical depth (b), maximum backscatter coefficient (c), and cloud lidar ratio (d) determined from the elastic backscatter signals by using the Klett method. The measurement was taken on 18 October between 1043 and 1628 lt. The temporal resolution is 150 s. The cloud lidar ratio is obtained by applying forward and backward integration. The maximum backscatter coefficient and the cloud optical depth are calculated with the shown cloud lidar ratio. RAT, ratio; BS, backscatter.

Tables (1)

Tables Icon

Table 1 Technical Data of the Combined Raman Elastic-Backscatter Lidar

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P λ 0 ( z ) = K λ 0 O ( z ) z 2 [ β λ 0 aer ( z ) + β λ 0 mol ( z ) ] × exp { - 2 0 z [ α λ 0 aer ( ζ ) + α λ 0 mol ( ζ ) ] d ζ } ,
P λ R ( z ) = K λ R O ( z ) z 2 N R ( z ) d σ λ R ( π ) d Ω × exp { - 0 z [ α λ 0 mol ( ζ ) + α λ 0 aer ( ζ ) + α λ R mol ( ζ ) + α λ R aer ( ζ ) ] d ζ } .
α λ 0 aer ( z ) = d d z [ ln N R ( z ) P λ R ( z ) z 2 ] - α λ 0 mol ( z ) - α λ R mol ( z ) 1 + ( λ 0 λ R ) k ,
P λ 0 ( z ) P λ R ( z 0 ) P λ 0 ( z 0 ) P λ R ( z ) ,
β λ 0 aer ( z ) = - β λ 0 mol ( z ) + [ β λ 0 aer ( z 0 ) + β λ 0 mol ( z 0 ) × P λ R ( z 0 ) P λ 0 ( z ) N R ( z ) P λ 0 ( z 0 ) P λ R ( z ) N R ( z 0 ) × exp exp { - z 0 z [ α λ R aer ( ζ ) + α λ R mol ( ζ ) ] d ζ } exp { - z 0 z [ α λ 0 aer ( ζ ) + α λ 0 mol ( ζ ) ] d ζ } .
S λ 0 aer ( z ) = α λ 0 aer ( z ) β λ 0 aer ( z ) ,
α λ 0 aer ( z ) + S λ 0 aer ( z ) S λ 0 mol α λ 0 mol ( z ) = S λ 0 aer ( z ) P λ 0 ( z ) z 2 exp { - 2 z 0 z [ S λ 0 aer ( ζ ) S λ 0 aer - 1 ] α λ 0 mol ( ζ ) d ζ } S λ 0 aer ( z 0 ) P λ 0 ( z 0 ) z 0 2 α λ 0 aer ( z 0 ) + S λ 0 aer ( z 0 ) S λ 0 mol α λ 0 mol ( z 0 ) - 2 z 0 z S λ 0 aer ( ζ ) P λ 0 ( ζ ) ζ 2 exp { - 2 z 0 ζ [ S λ 0 aer ( ξ ) S λ 0 mol - 1 ] α λ 0 mol ( ξ ) d ξ } d ζ .
α λ 0 aer ¯ ( z , Δ z , Δ t ) = 1 Δ z [ 1 + ( λ 0 λ R ) k ] × ln [ P λ R , C ¯ ( z - 0.5 Δ z , Δ t ) P λ R , C ¯ ( z + 0.5 Δ z , Δ t ) ] .
T ( z ) = T ( 0 ) + d T d z z ,
p ( z ) = p ( 0 ) exp ( - z / z p ) ,
exp { - 0 z [ α λ 0 aer ( ζ ) + α λ R aer ( ζ ) ] d ζ } ¯ ,
0 z [ α λ 0 aer ( ζ ) + α λ R aer ( ζ ) ] d ζ ¯ ,

Metrics