Abstract

We present experimental investigations of two configurations for refractive-index profiling and for geometry measurements of glass-integrated waveguides with the refracted near-field technique. An original configuration is proposed that simplifies the measurement cell and the handling.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miyashita, S. Sumida, S. Sakaguchi, “Integrated optical devices based on silica waveguide technologies,” in Integrated Optical Circuit Engineering VI, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.993, 288–291 (1988).
  2. P. Roth, O. Parriaux, “Integrated optic interferometer with phase diversity,” in Proceedings of International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), paper 20B2-17.
  3. G. Voirin, “Ion exchange glass circuit for interferometric distance measurement,” in Annual Meeting Technical Digest, Vol. 15 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MZ3.
  4. R. G. Eguchi, E. A. Maunders, I. K. Naik, “Fabrication of low loss waveguides in BK7 by ion exchange,” in Integrated Optics III, D. G. Hall, L. D. Hutcheson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 21–26 (1983).
  5. R. Klein, D. Jestel, H. J. Lilienhof, E. Voges, “Charge controlled ion exchange—a way to reproducible fabrication of integrated optical components in glass,” in Micro-Optics, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1014, 318–322 (1988).
  6. G. V. Treyz, “Silicon Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
    [CrossRef]
  7. K. Morishita, “Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method,” IEEE J. Lightwave Technol. LT-4, 1120–1124 (1986).
    [CrossRef]
  8. R. Göring, M. Rothhardt, “Application of the refracted near field technique to multimode planar and channel waveguides in glass,” Opt. Commun. 7, 82–85 (1986).
  9. E. Voges, D. Jestel, J. Steffen, “Index profiles of integrated optics strip waveguides determined by refractive near field measurements and reflectivity profiling,” in Proceedings of Micro-Optical Components and Gradient Index Lenses Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), pp. 268–271.
  10. D. Jestel, E. Voges, “Refractive index profiling of ion exchanged glass waveguides by RNF-measurements,” in ECIO ’89: 5th European Conference on Integrated Optics, M. R. Papuchon, A. Carenco, D. B. Ostrowsky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1141, 29–32 (1989).
  11. W. J. Stewart, “A new technique for measuring the refractive index profiles of graded optical fibers,” in Technical Digest of the First International Conference on Integrated Optics and Optical Fiber Communication (1977), paper C2.2.
  12. K. I. White, “Practical application of the refractive near field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
    [CrossRef]
  13. K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” IEEE J. Lightwave Technol. 7, 1162–1169 (1989).
    [CrossRef]
  14. J. P. Pellaux, A. Witchi, T. Bishofberg, “Appareil de mesure pour définir les propriétés de transmission des fibres optiques monomodes,” Tech. Mitt. PTT 4, 138–151 (1985) [J. Telecommun. 53, 649–658 (1986)].
  15. W. J. Stewart, D. C. J. Reid, “High resolution optical fiber index profiling,” in Technical Digest of the Eighth European Conference on Optical Communication (1982), pp. 193–196.
  16. N. Gisin, K. Raine, “Correcting refracted near-field refractive-index profile measurements for Gaussian intensity distributions,” Opt. Commun. 83, 295–299 (1991).
    [CrossRef]

1991

G. V. Treyz, “Silicon Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
[CrossRef]

N. Gisin, K. Raine, “Correcting refracted near-field refractive-index profile measurements for Gaussian intensity distributions,” Opt. Commun. 83, 295–299 (1991).
[CrossRef]

1989

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” IEEE J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

1986

K. Morishita, “Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method,” IEEE J. Lightwave Technol. LT-4, 1120–1124 (1986).
[CrossRef]

R. Göring, M. Rothhardt, “Application of the refracted near field technique to multimode planar and channel waveguides in glass,” Opt. Commun. 7, 82–85 (1986).

1985

J. P. Pellaux, A. Witchi, T. Bishofberg, “Appareil de mesure pour définir les propriétés de transmission des fibres optiques monomodes,” Tech. Mitt. PTT 4, 138–151 (1985) [J. Telecommun. 53, 649–658 (1986)].

1982

W. J. Stewart, D. C. J. Reid, “High resolution optical fiber index profiling,” in Technical Digest of the Eighth European Conference on Optical Communication (1982), pp. 193–196.

1979

K. I. White, “Practical application of the refractive near field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Baines, J. G. N.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” IEEE J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Bishofberg, T.

J. P. Pellaux, A. Witchi, T. Bishofberg, “Appareil de mesure pour définir les propriétés de transmission des fibres optiques monomodes,” Tech. Mitt. PTT 4, 138–151 (1985) [J. Telecommun. 53, 649–658 (1986)].

Eguchi, R. G.

R. G. Eguchi, E. A. Maunders, I. K. Naik, “Fabrication of low loss waveguides in BK7 by ion exchange,” in Integrated Optics III, D. G. Hall, L. D. Hutcheson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 21–26 (1983).

Gisin, N.

N. Gisin, K. Raine, “Correcting refracted near-field refractive-index profile measurements for Gaussian intensity distributions,” Opt. Commun. 83, 295–299 (1991).
[CrossRef]

Göring, R.

R. Göring, M. Rothhardt, “Application of the refracted near field technique to multimode planar and channel waveguides in glass,” Opt. Commun. 7, 82–85 (1986).

Jestel, D.

D. Jestel, E. Voges, “Refractive index profiling of ion exchanged glass waveguides by RNF-measurements,” in ECIO ’89: 5th European Conference on Integrated Optics, M. R. Papuchon, A. Carenco, D. B. Ostrowsky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1141, 29–32 (1989).

R. Klein, D. Jestel, H. J. Lilienhof, E. Voges, “Charge controlled ion exchange—a way to reproducible fabrication of integrated optical components in glass,” in Micro-Optics, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1014, 318–322 (1988).

E. Voges, D. Jestel, J. Steffen, “Index profiles of integrated optics strip waveguides determined by refractive near field measurements and reflectivity profiling,” in Proceedings of Micro-Optical Components and Gradient Index Lenses Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), pp. 268–271.

Klein, R.

R. Klein, D. Jestel, H. J. Lilienhof, E. Voges, “Charge controlled ion exchange—a way to reproducible fabrication of integrated optical components in glass,” in Micro-Optics, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1014, 318–322 (1988).

Lilienhof, H. J.

R. Klein, D. Jestel, H. J. Lilienhof, E. Voges, “Charge controlled ion exchange—a way to reproducible fabrication of integrated optical components in glass,” in Micro-Optics, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1014, 318–322 (1988).

Maunders, E. A.

R. G. Eguchi, E. A. Maunders, I. K. Naik, “Fabrication of low loss waveguides in BK7 by ion exchange,” in Integrated Optics III, D. G. Hall, L. D. Hutcheson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 21–26 (1983).

Miyashita, T.

T. Miyashita, S. Sumida, S. Sakaguchi, “Integrated optical devices based on silica waveguide technologies,” in Integrated Optical Circuit Engineering VI, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.993, 288–291 (1988).

Morishita, K.

K. Morishita, “Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method,” IEEE J. Lightwave Technol. LT-4, 1120–1124 (1986).
[CrossRef]

Naik, I. K.

R. G. Eguchi, E. A. Maunders, I. K. Naik, “Fabrication of low loss waveguides in BK7 by ion exchange,” in Integrated Optics III, D. G. Hall, L. D. Hutcheson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 21–26 (1983).

Parriaux, O.

P. Roth, O. Parriaux, “Integrated optic interferometer with phase diversity,” in Proceedings of International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), paper 20B2-17.

Pellaux, J. P.

J. P. Pellaux, A. Witchi, T. Bishofberg, “Appareil de mesure pour définir les propriétés de transmission des fibres optiques monomodes,” Tech. Mitt. PTT 4, 138–151 (1985) [J. Telecommun. 53, 649–658 (1986)].

Putland, D. E.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” IEEE J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Raine, K.

N. Gisin, K. Raine, “Correcting refracted near-field refractive-index profile measurements for Gaussian intensity distributions,” Opt. Commun. 83, 295–299 (1991).
[CrossRef]

Raine, K. W.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” IEEE J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Reid, D. C. J.

W. J. Stewart, D. C. J. Reid, “High resolution optical fiber index profiling,” in Technical Digest of the Eighth European Conference on Optical Communication (1982), pp. 193–196.

Roth, P.

P. Roth, O. Parriaux, “Integrated optic interferometer with phase diversity,” in Proceedings of International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), paper 20B2-17.

Rothhardt, M.

R. Göring, M. Rothhardt, “Application of the refracted near field technique to multimode planar and channel waveguides in glass,” Opt. Commun. 7, 82–85 (1986).

Sakaguchi, S.

T. Miyashita, S. Sumida, S. Sakaguchi, “Integrated optical devices based on silica waveguide technologies,” in Integrated Optical Circuit Engineering VI, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.993, 288–291 (1988).

Steffen, J.

E. Voges, D. Jestel, J. Steffen, “Index profiles of integrated optics strip waveguides determined by refractive near field measurements and reflectivity profiling,” in Proceedings of Micro-Optical Components and Gradient Index Lenses Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), pp. 268–271.

Stewart, W. J.

W. J. Stewart, D. C. J. Reid, “High resolution optical fiber index profiling,” in Technical Digest of the Eighth European Conference on Optical Communication (1982), pp. 193–196.

W. J. Stewart, “A new technique for measuring the refractive index profiles of graded optical fibers,” in Technical Digest of the First International Conference on Integrated Optics and Optical Fiber Communication (1977), paper C2.2.

Sumida, S.

T. Miyashita, S. Sumida, S. Sakaguchi, “Integrated optical devices based on silica waveguide technologies,” in Integrated Optical Circuit Engineering VI, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.993, 288–291 (1988).

Treyz, G. V.

G. V. Treyz, “Silicon Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
[CrossRef]

Voges, E.

E. Voges, D. Jestel, J. Steffen, “Index profiles of integrated optics strip waveguides determined by refractive near field measurements and reflectivity profiling,” in Proceedings of Micro-Optical Components and Gradient Index Lenses Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), pp. 268–271.

R. Klein, D. Jestel, H. J. Lilienhof, E. Voges, “Charge controlled ion exchange—a way to reproducible fabrication of integrated optical components in glass,” in Micro-Optics, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1014, 318–322 (1988).

D. Jestel, E. Voges, “Refractive index profiling of ion exchanged glass waveguides by RNF-measurements,” in ECIO ’89: 5th European Conference on Integrated Optics, M. R. Papuchon, A. Carenco, D. B. Ostrowsky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1141, 29–32 (1989).

Voirin, G.

G. Voirin, “Ion exchange glass circuit for interferometric distance measurement,” in Annual Meeting Technical Digest, Vol. 15 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MZ3.

White, K. I.

K. I. White, “Practical application of the refractive near field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Witchi, A.

J. P. Pellaux, A. Witchi, T. Bishofberg, “Appareil de mesure pour définir les propriétés de transmission des fibres optiques monomodes,” Tech. Mitt. PTT 4, 138–151 (1985) [J. Telecommun. 53, 649–658 (1986)].

Electron. Lett.

G. V. Treyz, “Silicon Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Electron. Lett. 27, 118–120 (1991).
[CrossRef]

IEEE J. Lightwave Technol.

K. Morishita, “Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method,” IEEE J. Lightwave Technol. LT-4, 1120–1124 (1986).
[CrossRef]

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” IEEE J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Opt. Commun.

N. Gisin, K. Raine, “Correcting refracted near-field refractive-index profile measurements for Gaussian intensity distributions,” Opt. Commun. 83, 295–299 (1991).
[CrossRef]

R. Göring, M. Rothhardt, “Application of the refracted near field technique to multimode planar and channel waveguides in glass,” Opt. Commun. 7, 82–85 (1986).

Opt. Quantum Electron.

K. I. White, “Practical application of the refractive near field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Tech. Mitt. PTT

J. P. Pellaux, A. Witchi, T. Bishofberg, “Appareil de mesure pour définir les propriétés de transmission des fibres optiques monomodes,” Tech. Mitt. PTT 4, 138–151 (1985) [J. Telecommun. 53, 649–658 (1986)].

Technical Digest of the Eighth European Conference on Optical Communication

W. J. Stewart, D. C. J. Reid, “High resolution optical fiber index profiling,” in Technical Digest of the Eighth European Conference on Optical Communication (1982), pp. 193–196.

Other

E. Voges, D. Jestel, J. Steffen, “Index profiles of integrated optics strip waveguides determined by refractive near field measurements and reflectivity profiling,” in Proceedings of Micro-Optical Components and Gradient Index Lenses Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), pp. 268–271.

D. Jestel, E. Voges, “Refractive index profiling of ion exchanged glass waveguides by RNF-measurements,” in ECIO ’89: 5th European Conference on Integrated Optics, M. R. Papuchon, A. Carenco, D. B. Ostrowsky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1141, 29–32 (1989).

W. J. Stewart, “A new technique for measuring the refractive index profiles of graded optical fibers,” in Technical Digest of the First International Conference on Integrated Optics and Optical Fiber Communication (1977), paper C2.2.

T. Miyashita, S. Sumida, S. Sakaguchi, “Integrated optical devices based on silica waveguide technologies,” in Integrated Optical Circuit Engineering VI, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.993, 288–291 (1988).

P. Roth, O. Parriaux, “Integrated optic interferometer with phase diversity,” in Proceedings of International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1989), paper 20B2-17.

G. Voirin, “Ion exchange glass circuit for interferometric distance measurement,” in Annual Meeting Technical Digest, Vol. 15 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper MZ3.

R. G. Eguchi, E. A. Maunders, I. K. Naik, “Fabrication of low loss waveguides in BK7 by ion exchange,” in Integrated Optics III, D. G. Hall, L. D. Hutcheson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 21–26 (1983).

R. Klein, D. Jestel, H. J. Lilienhof, E. Voges, “Charge controlled ion exchange—a way to reproducible fabrication of integrated optical components in glass,” in Micro-Optics, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1014, 318–322 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Refracted near-field technique for optical fibers. The rays with an angle larger than θmin were collected by an annular detector. The angles φ and θ are related by relation (1).

Fig. 2
Fig. 2

Refracted near-field technique for integrated optical devices, configuration 1, similar to the fiber configuration and the one presented in Refs. 7 and 8.

Fig. 3
Fig. 3

Refracted near-field technique for integrated optical devices, configuration 2; the substrate collects the refracted rays.

Fig. 4
Fig. 4

Typical raw data of two scans over a multimode guide in configuration 2. The four guides are part of the 4 × 4 coupler. The guides were buried (≅ 38 μm) and another glass plate was glued on top of the component that contains the guides. The scan in (a) is perpendicular to the surface, and the scan in (b) is parallel. In (a), from left to right, one sees the second glass plate, the glue, the buried guides, and the substrate. The detector is at the right; hence the general slope of the graph.

Fig. 5
Fig. 5

Typical raw data of two scans over a single-mode guide in configuration 2. The perpendicular scan shows, from left to right, the substrate, the single-mode guide, and the (lower RI) liquid.

Fig. 6
Fig. 6

Typical raw data of a two-dimensional scan over a buried multimode guide in configuration 2. The flat surface on the left corresponds to the glass substrate. The valley on the right corresponds to the glue (as in Fig. 4, a second glass plate is glued on top of the component).

Fig. 7
Fig. 7

Typical raw data of a two-dimensional scan over four buried multimode guides in configuration 2. The flat surface on the left corresponds to the glass substrate. The valley in the middle corresponds to the glue (as in Fig. 4, a second glass plate is glued on top of the component), and the second flat surface on the right corresponds to the second glass plate. The four waveguides, part of the 4 × 4 coupler, can be clearly seen. Appropriate software permitted us to measure the geometry of these waveguides.

Fig. 8
Fig. 8

Data of Fig. 4(a) calibrated by fixing the values of the silica substrate and the glue. The large RI differences necessitate the use of a nonlinear calibration technique, as presented in Ref. 14, which takes into account the shape of the light beam.

Fig. 9
Fig. 9

Data of Fig. 5 calibrated by fixing the values of the silica substrate and the liquid. Since the RI differences are small, a linear interpolation was used.

Fig. 10
Fig. 10

Same as Fig. 9 but for a different single-mode waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 1 2 sin 2 ( φ min ) = n 2 ( r ) - n 2 2 cos 2 ( θ min ) ,

Metrics