Abstract

The design and operation characteristics of a low-Q cavity dye laser chain pumped by a single laser (seeded Nd:YAG) for generating high-power tunable subpicosecond pulses are presented. Two low-Q short dye cavities in cascade pumped well above threshold followed by extracavity pulse shaping in a highly saturated absorber and amplifiers lead to stable generation of single 500-fs pulses, i.e., a pulse-shortening factor > 104 (from a smooth 6-ns pump pulse). Output pulse energies of 500 μJ (1-GW peak power) are produced from 40-mJ pump energy and used to generate high-power tunable subpicosecond pulses from 450 to 700 nm by supercontinuum generation, spectral selection, and amplification in dye amplifiers pumped by the same Nd:YAG laser. The spectral and time processes involved in these pulse-shortening methods are discussed with a rate-equation model.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kaiser, Ultrashort Laser Pulses and Applications, Vol. 60 of Topics in Applied Physics (Springer-Verlag, New York, 1988).
    [CrossRef]
  2. F. P. Schäfer, Dye Lasers, Vol. 1 of Topics in Applied Physics (Springer-Verlag, New York, 1990).
  3. F. J. Duarte, L. W. Hillman, “Dye laser principles,” in Quantum Electronics: Principles and Applications, P. F. Liao, P. L. Kelley, eds. (Academic, New York, 1990).
  4. D. Roess, “Giant pulse shortening by resonator transients,” J. Appl. Phys. 37, 2004–2006 (1966).
    [CrossRef]
  5. C. Lin, “Studies of relaxation oscillations in organic dye lasers,” IEEE J. Quantum Electron. QE-11, 602–609 (1975).
  6. C. Lin, C. V. Shank, “Subnanosecond tunable dye laser pulse generation by controlled resonator transient,” Appl. Phys. Lett. 26, 389–391 (1975).
    [CrossRef]
  7. G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
    [CrossRef]
  8. A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973).
    [CrossRef]
  9. F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983).
    [CrossRef]
  10. C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
    [CrossRef]
  11. H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
    [CrossRef]
  12. M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985).
    [CrossRef]
  13. N. D. Hung, Y. H. Meyer, “Simple generation of 400–700 nm picosecond laser pumping,” Appl. Phys. B 53, 226–230 (1991).
    [CrossRef]
  14. Y. Miyazoe, M. Maeda, “On the spiking phenomena in organic dye laser,” IEEE J. Quantum Electron. QE-7, 36–37 (1971).
    [CrossRef]
  15. R. Wyatt, “Transient behaviour of pulsed dye lasers,” Appl. Phys. 21, 353–359 (1980).
    [CrossRef]
  16. R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980).
    [CrossRef]
  17. Y. Kawakatsu, K. Miyazaki, T. Hasama, T. Sato, “Generation of single short tunable UV pulses using a simple short cavity dye laser,” Appl. Opt. 25, 634–638 (1986).
    [CrossRef]
  18. P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
    [CrossRef]
  19. A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982).
    [CrossRef]
  20. B. Fan, T. K. Gustafson, “Narrow band picosecond pulses from an ultrashort-cavity dye laser,” Appl. Phys. Lett. 28, 202–204 (1976).
    [CrossRef]
  21. H. Salzmann, H. Strohwald, “Single picosecond dye laser pulses by resonator transients,” Phys. Lett. A 57, 41–42 (1976).
    [CrossRef]
  22. Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.
  23. Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).
  24. G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984).
    [CrossRef]
  25. F. Nesa, “Processus resonnants nonlinéaires dans les colorants: production d’impulsions laser subpicosecondes,” Ph.D. dissertation (University of Paris-Sud, Orsay, France, 1989).
  26. F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990).
    [CrossRef]
  27. E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976).
    [CrossRef]
  28. N. D. Hung, Y. H. Meyer, “Generation of powerful 1 picosecond dye laser pulses at two independently tunable wavelengths,” Appl. Phys. B 52, 67–70 (1991).
    [CrossRef]
  29. N. D. Hung, Y. H. Meyer, “A compact Fabry-Perot tuned 1 ps dye laser,” Opt. Commun. 79, 215–218 (1990).
    [CrossRef]
  30. Y. H. Meyer, P. Flamant, “A basic property of dye lasers: spectral evolution,” Opt. Commun. 19, 20–24 (1976).
    [CrossRef]
  31. M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991).
    [CrossRef]
  32. Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
    [CrossRef]
  33. J. H. Richardson, L. L. Steinmetz, B. W. Wallin, “Variable frequency sweeping of a dye laser,” Appl. Opt. 16, 1133–1135 (1977).
    [CrossRef] [PubMed]
  34. P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977).
    [CrossRef]
  35. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  36. P. Flamant, Y. H. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
    [CrossRef]
  37. U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
    [CrossRef]
  38. J. B. Atkinson, F. P. Pace, “The spectral linewidth of a flashlamp-pumped dye laser,” IEEE J. Quantum Electron. QE-9, 569–574 (1973).
    [CrossRef]
  39. P. Sperber, A. Penzkofer, “So-Sn two-photon absorption dynamics of rhodamine dyes,” Opt. Quantum Electron. 18, 381–401 (1986).
    [CrossRef]
  40. D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981).
    [CrossRef]

1991

N. D. Hung, Y. H. Meyer, “Simple generation of 400–700 nm picosecond laser pumping,” Appl. Phys. B 53, 226–230 (1991).
[CrossRef]

M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991).
[CrossRef]

N. D. Hung, Y. H. Meyer, “Generation of powerful 1 picosecond dye laser pulses at two independently tunable wavelengths,” Appl. Phys. B 52, 67–70 (1991).
[CrossRef]

1990

N. D. Hung, Y. H. Meyer, “A compact Fabry-Perot tuned 1 ps dye laser,” Opt. Commun. 79, 215–218 (1990).
[CrossRef]

F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990).
[CrossRef]

1987

Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).

1986

Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
[CrossRef]

P. Sperber, A. Penzkofer, “So-Sn two-photon absorption dynamics of rhodamine dyes,” Opt. Quantum Electron. 18, 381–401 (1986).
[CrossRef]

Y. Kawakatsu, K. Miyazaki, T. Hasama, T. Sato, “Generation of single short tunable UV pulses using a simple short cavity dye laser,” Appl. Opt. 25, 634–638 (1986).
[CrossRef]

1985

M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985).
[CrossRef]

1984

P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
[CrossRef]

G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984).
[CrossRef]

1983

F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983).
[CrossRef]

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

1982

A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982).
[CrossRef]

1981

D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981).
[CrossRef]

1980

R. Wyatt, “Transient behaviour of pulsed dye lasers,” Appl. Phys. 21, 353–359 (1980).
[CrossRef]

R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980).
[CrossRef]

1977

J. H. Richardson, L. L. Steinmetz, B. W. Wallin, “Variable frequency sweeping of a dye laser,” Appl. Opt. 16, 1133–1135 (1977).
[CrossRef] [PubMed]

P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977).
[CrossRef]

1976

E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976).
[CrossRef]

Y. H. Meyer, P. Flamant, “A basic property of dye lasers: spectral evolution,” Opt. Commun. 19, 20–24 (1976).
[CrossRef]

B. Fan, T. K. Gustafson, “Narrow band picosecond pulses from an ultrashort-cavity dye laser,” Appl. Phys. Lett. 28, 202–204 (1976).
[CrossRef]

H. Salzmann, H. Strohwald, “Single picosecond dye laser pulses by resonator transients,” Phys. Lett. A 57, 41–42 (1976).
[CrossRef]

1975

C. Lin, “Studies of relaxation oscillations in organic dye lasers,” IEEE J. Quantum Electron. QE-11, 602–609 (1975).

C. Lin, C. V. Shank, “Subnanosecond tunable dye laser pulse generation by controlled resonator transient,” Appl. Phys. Lett. 26, 389–391 (1975).
[CrossRef]

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

1973

J. B. Atkinson, F. P. Pace, “The spectral linewidth of a flashlamp-pumped dye laser,” IEEE J. Quantum Electron. QE-9, 569–574 (1973).
[CrossRef]

P. Flamant, Y. H. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973).
[CrossRef]

1971

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Y. Miyazoe, M. Maeda, “On the spiking phenomena in organic dye laser,” IEEE J. Quantum Electron. QE-7, 36–37 (1971).
[CrossRef]

1966

D. Roess, “Giant pulse shortening by resonator transients,” J. Appl. Phys. 37, 2004–2006 (1966).
[CrossRef]

Atkinson, J. B.

J. B. Atkinson, F. P. Pace, “The spectral linewidth of a flashlamp-pumped dye laser,” IEEE J. Quantum Electron. QE-9, 569–574 (1973).
[CrossRef]

Benoist d’Azy, O.

Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
[CrossRef]

Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.

Bergman, A.

E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976).
[CrossRef]

Bjorkholm, J. E.

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

Box, S. J. C.

P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
[CrossRef]

Breheret, E.

M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985).
[CrossRef]

Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.

Bréhéret, E.

Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).

Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
[CrossRef]

Campbell, B. F.

D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981).
[CrossRef]

Chiu, P. H.

P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
[CrossRef]

Clark, J. H.

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

Cox, A. J.

G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984).
[CrossRef]

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982).
[CrossRef]

Cubeddu, R.

R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980).
[CrossRef]

De Silvestry, S.

R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980).
[CrossRef]

de Witte, O.

A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973).
[CrossRef]

Dezausier, P.

A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973).
[CrossRef]

Duarte, F. J.

F. J. Duarte, L. W. Hillman, “Dye laser principles,” in Quantum Electronics: Principles and Applications, P. F. Liao, P. L. Kelley, eds. (Academic, New York, 1990).

Eranian, A.

A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973).
[CrossRef]

Fan, B.

B. Fan, T. K. Gustafson, “Narrow band picosecond pulses from an ultrashort-cavity dye laser,” Appl. Phys. Lett. 28, 202–204 (1976).
[CrossRef]

Flamant, P.

P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977).
[CrossRef]

Y. H. Meyer, P. Flamant, “A basic property of dye lasers: spectral evolution,” Opt. Commun. 19, 20–24 (1976).
[CrossRef]

P. Flamant, Y. H. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

Gaffney, S. T.

D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981).
[CrossRef]

Ganiel, U.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Gustafson, T. K.

B. Fan, T. K. Gustafson, “Narrow band picosecond pulses from an ultrashort-cavity dye laser,” Appl. Phys. Lett. 28, 202–204 (1976).
[CrossRef]

Hardy, A.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Hasama, T.

Hillman, L. W.

F. J. Duarte, L. W. Hillman, “Dye laser principles,” in Quantum Electronics: Principles and Applications, P. F. Liao, P. L. Kelley, eds. (Academic, New York, 1990).

Hsu, S.

P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
[CrossRef]

Hung, N. D.

N. D. Hung, Y. H. Meyer, “Generation of powerful 1 picosecond dye laser pulses at two independently tunable wavelengths,” Appl. Phys. B 52, 67–70 (1991).
[CrossRef]

N. D. Hung, Y. H. Meyer, “Simple generation of 400–700 nm picosecond laser pumping,” Appl. Phys. B 53, 226–230 (1991).
[CrossRef]

N. D. Hung, Y. H. Meyer, “A compact Fabry-Perot tuned 1 ps dye laser,” Opt. Commun. 79, 215–218 (1990).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976).
[CrossRef]

Juramy, P.

P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977).
[CrossRef]

Kaiser, W.

W. Kaiser, Ultrashort Laser Pulses and Applications, Vol. 60 of Topics in Applied Physics (Springer-Verlag, New York, 1988).
[CrossRef]

Kawakatsu, Y.

Kogelnik, H.

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Kwok, H.

P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
[CrossRef]

Lin, C.

C. Lin, “Studies of relaxation oscillations in organic dye lasers,” IEEE J. Quantum Electron. QE-11, 602–609 (1975).

C. Lin, C. V. Shank, “Subnanosecond tunable dye laser pulse generation by controlled resonator transient,” Appl. Phys. Lett. 26, 389–391 (1975).
[CrossRef]

Maeda, M.

Y. Miyazoe, M. Maeda, “On the spiking phenomena in organic dye laser,” IEEE J. Quantum Electron. QE-7, 36–37 (1971).
[CrossRef]

Magde, D.

D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981).
[CrossRef]

Martin, M. M.

M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991).
[CrossRef]

F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990).
[CrossRef]

Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).

Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
[CrossRef]

M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985).
[CrossRef]

Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.

Merrit, C. D.

A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982).
[CrossRef]

Meyer, Y. H.

N. D. Hung, Y. H. Meyer, “Generation of powerful 1 picosecond dye laser pulses at two independently tunable wavelengths,” Appl. Phys. B 52, 67–70 (1991).
[CrossRef]

N. D. Hung, Y. H. Meyer, “Simple generation of 400–700 nm picosecond laser pumping,” Appl. Phys. B 53, 226–230 (1991).
[CrossRef]

M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991).
[CrossRef]

N. D. Hung, Y. H. Meyer, “A compact Fabry-Perot tuned 1 ps dye laser,” Opt. Commun. 79, 215–218 (1990).
[CrossRef]

F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990).
[CrossRef]

Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).

Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
[CrossRef]

M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985).
[CrossRef]

P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977).
[CrossRef]

Y. H. Meyer, P. Flamant, “A basic property of dye lasers: spectral evolution,” Opt. Commun. 19, 20–24 (1976).
[CrossRef]

P. Flamant, Y. H. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.

Miyazaki, K.

Miyazoe, Y.

Y. Miyazoe, M. Maeda, “On the spiking phenomena in organic dye laser,” IEEE J. Quantum Electron. QE-7, 36–37 (1971).
[CrossRef]

Nesa, F.

F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990).
[CrossRef]

Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).

F. Nesa, “Processus resonnants nonlinéaires dans les colorants: production d’impulsions laser subpicosecondes,” Ph.D. dissertation (University of Paris-Sud, Orsay, France, 1989).

Neumann, G.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Pace, F. P.

J. B. Atkinson, F. P. Pace, “The spectral linewidth of a flashlamp-pumped dye laser,” IEEE J. Quantum Electron. QE-9, 569–574 (1973).
[CrossRef]

Penzkofer, A.

P. Sperber, A. Penzkofer, “So-Sn two-photon absorption dynamics of rhodamine dyes,” Opt. Quantum Electron. 18, 381–401 (1986).
[CrossRef]

Plaza, P.

M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991).
[CrossRef]

Renz, G.

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

Richardson, J. H.

Roess, D.

D. Roess, “Giant pulse shortening by resonator transients,” J. Appl. Phys. 37, 2004–2006 (1966).
[CrossRef]

Salzmann, H.

H. Salzmann, H. Strohwald, “Single picosecond dye laser pulses by resonator transients,” Phys. Lett. A 57, 41–42 (1976).
[CrossRef]

Sato, T.

Schäfer, F. P.

F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983).
[CrossRef]

F. P. Schäfer, Dye Lasers, Vol. 1 of Topics in Applied Physics (Springer-Verlag, New York, 1990).

Scott, G. W.

G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984).
[CrossRef]

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982).
[CrossRef]

Shank, C. V.

E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976).
[CrossRef]

C. Lin, C. V. Shank, “Subnanosecond tunable dye laser pulse generation by controlled resonator transient,” Appl. Phys. Lett. 26, 389–391 (1975).
[CrossRef]

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Shen, S. G.

G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Sperber, P.

P. Sperber, A. Penzkofer, “So-Sn two-photon absorption dynamics of rhodamine dyes,” Opt. Quantum Electron. 18, 381–401 (1986).
[CrossRef]

Steinmetz, L. L.

Strohwald, H.

H. Salzmann, H. Strohwald, “Single picosecond dye laser pulses by resonator transients,” Phys. Lett. A 57, 41–42 (1976).
[CrossRef]

Svelto, O.

R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980).
[CrossRef]

Szatmari, S.

F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983).
[CrossRef]

Tolbert, M. A.

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

Treves, D.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Wallin, B. W.

Webb, S. P.

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

Wenchong, L.

F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983).
[CrossRef]

Wyatt, R.

R. Wyatt, “Transient behaviour of pulsed dye lasers,” Appl. Phys. 21, 353–359 (1980).
[CrossRef]

Appl. Phys. B

F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983).
[CrossRef]

Appl. Phys. Lett.

A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys. B

N. D. Hung, Y. H. Meyer, “Simple generation of 400–700 nm picosecond laser pumping,” Appl. Phys. B 53, 226–230 (1991).
[CrossRef]

Appl. Phys. Lett.

B. Fan, T. K. Gustafson, “Narrow band picosecond pulses from an ultrashort-cavity dye laser,” Appl. Phys. Lett. 28, 202–204 (1976).
[CrossRef]

Appl. Phys.

R. Wyatt, “Transient behaviour of pulsed dye lasers,” Appl. Phys. 21, 353–359 (1980).
[CrossRef]

Appl. Phys. B

N. D. Hung, Y. H. Meyer, “Generation of powerful 1 picosecond dye laser pulses at two independently tunable wavelengths,” Appl. Phys. B 52, 67–70 (1991).
[CrossRef]

Appl. Phys. Lett.

C. Lin, C. V. Shank, “Subnanosecond tunable dye laser pulse generation by controlled resonator transient,” Appl. Phys. Lett. 26, 389–391 (1975).
[CrossRef]

C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Chem. Phys.

M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991).
[CrossRef]

Chem. Phys. Lett.

E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976).
[CrossRef]

IEEE J. Quantum Electron.

C. Lin, “Studies of relaxation oscillations in organic dye lasers,” IEEE J. Quantum Electron. QE-11, 602–609 (1975).

G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983).
[CrossRef]

J. B. Atkinson, F. P. Pace, “The spectral linewidth of a flashlamp-pumped dye laser,” IEEE J. Quantum Electron. QE-9, 569–574 (1973).
[CrossRef]

IEEE J. Quantum Electron.

D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981).
[CrossRef]

Y. Miyazoe, M. Maeda, “On the spiking phenomena in organic dye laser,” IEEE J. Quantum Electron. QE-7, 36–37 (1971).
[CrossRef]

P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984).
[CrossRef]

P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977).
[CrossRef]

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

J. Phys.

Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).

J. Appl. Phys.

D. Roess, “Giant pulse shortening by resonator transients,” J. Appl. Phys. 37, 2004–2006 (1966).
[CrossRef]

Opt. Commun.

F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990).
[CrossRef]

P. Flamant, Y. H. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973).
[CrossRef]

Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986).
[CrossRef]

Opt. Commun.

N. D. Hung, Y. H. Meyer, “A compact Fabry-Perot tuned 1 ps dye laser,” Opt. Commun. 79, 215–218 (1990).
[CrossRef]

Y. H. Meyer, P. Flamant, “A basic property of dye lasers: spectral evolution,” Opt. Commun. 19, 20–24 (1976).
[CrossRef]

M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985).
[CrossRef]

R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980).
[CrossRef]

A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973).
[CrossRef]

Opt. Quantum Electron.

P. Sperber, A. Penzkofer, “So-Sn two-photon absorption dynamics of rhodamine dyes,” Opt. Quantum Electron. 18, 381–401 (1986).
[CrossRef]

Phys. Lett. A

H. Salzmann, H. Strohwald, “Single picosecond dye laser pulses by resonator transients,” Phys. Lett. A 57, 41–42 (1976).
[CrossRef]

Rev. Sci. Instrum.

G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984).
[CrossRef]

Other

F. Nesa, “Processus resonnants nonlinéaires dans les colorants: production d’impulsions laser subpicosecondes,” Ph.D. dissertation (University of Paris-Sud, Orsay, France, 1989).

Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

W. Kaiser, Ultrashort Laser Pulses and Applications, Vol. 60 of Topics in Applied Physics (Springer-Verlag, New York, 1988).
[CrossRef]

F. P. Schäfer, Dye Lasers, Vol. 1 of Topics in Applied Physics (Springer-Verlag, New York, 1990).

F. J. Duarte, L. W. Hillman, “Dye laser principles,” in Quantum Electronics: Principles and Applications, P. F. Liao, P. L. Kelley, eds. (Academic, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

General schema of the subpicosecond tunable dye laser chain: STS laser, spectrotemporal selection laser; MSA, multipass saturated amplifier; SA, saturable absorber; H2O, water cuvette for supercontinuum generation; F, spectral filter.

Fig. 2
Fig. 2

Subpicosecond pulse generation at 603 nm: O1, 1-cm STS oscillator; G, grating; MPA’s, multipass amplifiers; S, slit; O2, 25-μm cavity oscillator; SA, saturable absorber; DL’s, delay lines; A, amplifiers; CL, cylindrical lens; L’s, lenses.

Fig. 3
Fig. 3

Tunable subpicosecond pulse generator: H2O, cuvette for supercontinuum generation; IF, interference filter; FP, Fabry–Perot étalon; M, movable mirrors; MPA, multipass saturable amplifier; SA, saturable absorber; A’s, amplifiers.

Fig. 4
Fig. 4

Single-shot time-integrated spectrum of a 1-cm oscillator with (a) a Hellma DL cuvette, (b) a two-wedged mirror cavity.

Fig. 5
Fig. 5

Two-dimensional analysis of the spectrotemporal evolution of the low-Q 1-cm R6G cavity emission (oscillator O1) that was recorded with synchronized (one-dimensional) intensity of single-mode Nd:YAG pumping at 532 nm: (a) near-threshold pumping, re, = 1.2; (b) at re = 1.6; (c) at operating conditions for the STS laser, re = 10; (d) intensity profiles integrated over a 1-nm band centered at each spectral maximum in (c).

Fig. 6
Fig. 6

(a) Shape of the STS laser pulse (after multipass amplification) as measured by a streak camera (50-ps/mm sweep speed) and Gaussian fit. (b) Autocorrelation trace of the STS laser emission. (c) Spectrum of the 1-cm cell STS laser emission integrated over 100 shots.

Fig. 7
Fig. 7

(a) Statistics of the output pulse duration and (b) intensity of the R6G STS dye laser, pumped by a single-mode Nd:YAG laser at 532 nm. The rms fluctuations were found to be ±6% and ±8%, respectively.

Fig. 8
Fig. 8

(a) Autocorrelation trace of the 25-μm cavity single-mode emission with pumping parameter re = 4. (b) Typical shape of the pulses that are emitted from a single-mode 25-μm cavity pumped 4 times above threshold with a 90-ps pulse, as measured with the streak camera (at 50 ps/mm). (c) Reshaping of the microcavity pulse by the MSA. (d) Single spike that was obtained after the saturable absorber was observed with a streak camera (50-ps/mm sweep speed; the pulse width is instrumental).

Fig. 9
Fig. 9

Spectra of the dye laser pulse (a) before and (b) after the first saturable absorber; (c)–(e) after each double-pass amplification.

Fig. 10
Fig. 10

Autocorrelation traces of (a) the amplified output pulse at 603.5 nm and (b) the spectrally filtered and amplified continuum at 490 nm.

Fig. 11
Fig. 11

Energy of the tunable subpicosecond pulses.

Fig. 12
Fig. 12

Tentative excited gain cross sections σg of R6G in ethanol (1.3 × 10−4 M) from subpicosecond pump–probe experiments (see Ref. 31). The quantity σg is deduced from measurements of transient gain or attenuation taken at a 5-ps pump–probe delay with magic angle polarizations after subpicosecond excitation at 550 nm. The ground state population depletion was estimated at 7% ± 3% from pump energy absorbed in the sample. A preliminary spectrum of the excited-state absorption σu was obtained by using the stationary values of σe from Ref. 39. Sharp features around 550 nm are due to pump scattering. For a discussion of other reported values for R6G excited-state cross sections see Ref. 40.

Fig. 13
Fig. 13

(a) Computed spectrotemporal evolution of the STS laser emission during relaxation oscillations of the 1-cm cell cavity at six different spectral maxima [see Fig. 4(a)]. The dotted curve represents the calculated excited-state population. The continuous curve represents the Gaussian-shaped pump pulse with a maximum at t = 8 ns. The calculation was started at t = 0. (b) Log display from the same computation that shows the build up and decrease of the STS laser intensities at 562, 564, and 566 nm over 14 orders of magnitude.

Fig. 14
Fig. 14

Relaxation oscillations at 560 nm in a 25-μm R6G cavity that were calculated by using a typical 90-ps pump pulse measured with the streak camera (4-ps resolution).

Tables (1)

Tables Icon

Table 1 Typical Characteristics of the Different Stages of the Tunable Subpicosecond Dye Laser (6-ns, 80-mJ Pumping Pulse at 532 nm)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N 1 d t = ( P + σ a ν I ν d ν ) N 0 - ( k + σ e ν I ν d ν ) N 1 , d I i d t = I ν i T [ 2 L ( σ g i N 1 - σ a i N 0 ) - α i ] + u ν i N 1 ,
P threshold = k ( σ a + σ ) / ( σ g - σ ) , N 1 = N ( σ a + σ ) / ( σ a - σ g ) ,
I i = I j δ i j exp ( t / τ i j ) ,
δ i j = σ e i + σ a i σ e j + σ a j ,
τ i j = T 2 L N ( δ i j σ a j - σ a i ) + α ( δ i j - 1 ) ,

Metrics