Abstract

We investigate the feasibility and perform an analysis of diode pumping organic dye lasers. From a number of candidate laser dyes operating in the visible (red) to near-infrared spectrum, we select two dyes that appear most suited for pumping by commercially available diode lasers. Detailed characterization of these two dyes provides critical laser parameters. A cw dye laser design is analyzed and optimized by using these parameters. Possible extension to pulsed laser operation is also presented.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Pierce, R. R. Birge, “Lasing properties of several near-IR dyes for a nitrogen laser-pumped dye laser with an optical amplifier,” IEEE J. Quantum Electron. QE-18, 1164–1170 (1982).
    [CrossRef]
  2. K. Kato, “A high power dye laser at 6700–7700 Å,” Opt. Commun. 19, 18–19 (1976).
    [CrossRef]
  3. J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
    [CrossRef]
  4. R. Raue, H. Harnisch, K. H. Drexhage, “Dyestuff lasers and light collectors—two new fields of application for fluorescent heterocyclic compounds,” Heterocycles 21, 167–190 (1984).
    [CrossRef]
  5. P. E. Oettinger, C. F. Dewey, “Lasing efficiency and photochemical stability of infrared laser dyes in the 710–1080 nm region,” IEEE J. Quantum Electron. QE-12, 95–101 (1976).
    [CrossRef]
  6. K. Kato, “Near infrared dye laser pumped by a carbazine 122 dye laser,” IEEE J. Quantum Electron. QE-12, 442–443 (1976).
    [CrossRef]
  7. C. A. Moore, C. D. Decker, “Power-scaling effects in dye lasers under high power laser excitation,” J. Appl. Phys. 49, 47–60 (1978).
    [CrossRef]
  8. J. Kuhl, R. Lambrich, D. Von der Linde, “Generation of near-infrared picosecond pulses by mode locked synchronous pumping of a jet-stream dye laser,” Appl. Phys. Lett. 31, 657–658 (1977).
    [CrossRef]
  9. M. Leduc, C. Weisbuch, “Cw dye laser emission beyond 1000 nm,” Opt. Commun. 26, 78–80 (1978).
    [CrossRef]
  10. M. Leduc, “Synchronous pumping of dye lasers up to 1095 nm,” Opt. Commun. 31, 66–68 (1979).
    [CrossRef]
  11. K. M. Romanek, O. Hildebrand, E. Gobel, “High power cw dye laser emission in the near IR from 685 nm to 965 nm,” Opt. Commun. 21, 16–19 (1977).
    [CrossRef]
  12. W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
    [CrossRef]
  13. B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
    [CrossRef]
  14. A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable picosecond pulses around 1.3 μm generated by a synchronously pumped infrared dye laser,” Opt. Lett. 8, 205–207 (1983).
    [CrossRef] [PubMed]
  15. A. Rosenberg, McDonnell Douglas Electronic Systems Co., Elmsford, N.Y. 10523 (personal communication, 1991).
  16. J. Britton, EG&G Optoelectronics, Vaudreuil, Quebec J7V 8P7, Canada (personal communication, 1991).
  17. S. J. Stickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
    [CrossRef]
  18. F. J. Duarte, L. W. Hillman, Dye Laser Principles with Applications (Academic, San Diego, Calif., 1990), pp. 194–196.

1984 (1)

R. Raue, H. Harnisch, K. H. Drexhage, “Dyestuff lasers and light collectors—two new fields of application for fluorescent heterocyclic compounds,” Heterocycles 21, 167–190 (1984).
[CrossRef]

1983 (1)

1982 (2)

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

B. M. Pierce, R. R. Birge, “Lasing properties of several near-IR dyes for a nitrogen laser-pumped dye laser with an optical amplifier,” IEEE J. Quantum Electron. QE-18, 1164–1170 (1982).
[CrossRef]

1981 (1)

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

1979 (1)

M. Leduc, “Synchronous pumping of dye lasers up to 1095 nm,” Opt. Commun. 31, 66–68 (1979).
[CrossRef]

1978 (2)

C. A. Moore, C. D. Decker, “Power-scaling effects in dye lasers under high power laser excitation,” J. Appl. Phys. 49, 47–60 (1978).
[CrossRef]

M. Leduc, C. Weisbuch, “Cw dye laser emission beyond 1000 nm,” Opt. Commun. 26, 78–80 (1978).
[CrossRef]

1977 (2)

J. Kuhl, R. Lambrich, D. Von der Linde, “Generation of near-infrared picosecond pulses by mode locked synchronous pumping of a jet-stream dye laser,” Appl. Phys. Lett. 31, 657–658 (1977).
[CrossRef]

K. M. Romanek, O. Hildebrand, E. Gobel, “High power cw dye laser emission in the near IR from 685 nm to 965 nm,” Opt. Commun. 21, 16–19 (1977).
[CrossRef]

1976 (3)

K. Kato, “A high power dye laser at 6700–7700 Å,” Opt. Commun. 19, 18–19 (1976).
[CrossRef]

P. E. Oettinger, C. F. Dewey, “Lasing efficiency and photochemical stability of infrared laser dyes in the 710–1080 nm region,” IEEE J. Quantum Electron. QE-12, 95–101 (1976).
[CrossRef]

K. Kato, “Near infrared dye laser pumped by a carbazine 122 dye laser,” IEEE J. Quantum Electron. QE-12, 442–443 (1976).
[CrossRef]

1974 (1)

J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
[CrossRef]

1962 (1)

S. J. Stickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

Berg, R. A.

S. J. Stickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

Birge, R. R.

B. M. Pierce, R. R. Birge, “Lasing properties of several near-IR dyes for a nitrogen laser-pumped dye laser with an optical amplifier,” IEEE J. Quantum Electron. QE-18, 1164–1170 (1982).
[CrossRef]

Britton, J.

J. Britton, EG&G Optoelectronics, Vaudreuil, Quebec J7V 8P7, Canada (personal communication, 1991).

Decker, C. D.

C. A. Moore, C. D. Decker, “Power-scaling effects in dye lasers under high power laser excitation,” J. Appl. Phys. 49, 47–60 (1978).
[CrossRef]

Dewey, C. F.

P. E. Oettinger, C. F. Dewey, “Lasing efficiency and photochemical stability of infrared laser dyes in the 710–1080 nm region,” IEEE J. Quantum Electron. QE-12, 95–101 (1976).
[CrossRef]

Drexhage, K. H.

R. Raue, H. Harnisch, K. H. Drexhage, “Dyestuff lasers and light collectors—two new fields of application for fluorescent heterocyclic compounds,” Heterocycles 21, 167–190 (1984).
[CrossRef]

A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable picosecond pulses around 1.3 μm generated by a synchronously pumped infrared dye laser,” Opt. Lett. 8, 205–207 (1983).
[CrossRef] [PubMed]

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Duarte, F. J.

F. J. Duarte, L. W. Hillman, Dye Laser Principles with Applications (Academic, San Diego, Calif., 1990), pp. 194–196.

Gobel, E.

K. M. Romanek, O. Hildebrand, E. Gobel, “High power cw dye laser emission in the near IR from 685 nm to 965 nm,” Opt. Commun. 21, 16–19 (1977).
[CrossRef]

Harnisch, H.

R. Raue, H. Harnisch, K. H. Drexhage, “Dyestuff lasers and light collectors—two new fields of application for fluorescent heterocyclic compounds,” Heterocycles 21, 167–190 (1984).
[CrossRef]

Hildebrand, O.

K. M. Romanek, O. Hildebrand, E. Gobel, “High power cw dye laser emission in the near IR from 685 nm to 965 nm,” Opt. Commun. 21, 16–19 (1977).
[CrossRef]

Hillman, L. W.

F. J. Duarte, L. W. Hillman, Dye Laser Principles with Applications (Academic, San Diego, Calif., 1990), pp. 194–196.

Kaiser, W.

A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable picosecond pulses around 1.3 μm generated by a synchronously pumped infrared dye laser,” Opt. Lett. 8, 205–207 (1983).
[CrossRef] [PubMed]

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Kato, K.

K. Kato, “Near infrared dye laser pumped by a carbazine 122 dye laser,” IEEE J. Quantum Electron. QE-12, 442–443 (1976).
[CrossRef]

K. Kato, “A high power dye laser at 6700–7700 Å,” Opt. Commun. 19, 18–19 (1976).
[CrossRef]

Kopainsky, B.

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Kranitzky, W.

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Kuhl, J.

J. Kuhl, R. Lambrich, D. Von der Linde, “Generation of near-infrared picosecond pulses by mode locked synchronous pumping of a jet-stream dye laser,” Appl. Phys. Lett. 31, 657–658 (1977).
[CrossRef]

Lambrich, R.

J. Kuhl, R. Lambrich, D. Von der Linde, “Generation of near-infrared picosecond pulses by mode locked synchronous pumping of a jet-stream dye laser,” Appl. Phys. Lett. 31, 657–658 (1977).
[CrossRef]

Leduc, M.

M. Leduc, “Synchronous pumping of dye lasers up to 1095 nm,” Opt. Commun. 31, 66–68 (1979).
[CrossRef]

M. Leduc, C. Weisbuch, “Cw dye laser emission beyond 1000 nm,” Opt. Commun. 26, 78–80 (1978).
[CrossRef]

Moore, C. A.

C. A. Moore, C. D. Decker, “Power-scaling effects in dye lasers under high power laser excitation,” J. Appl. Phys. 49, 47–60 (1978).
[CrossRef]

Oettinger, P. E.

P. E. Oettinger, C. F. Dewey, “Lasing efficiency and photochemical stability of infrared laser dyes in the 710–1080 nm region,” IEEE J. Quantum Electron. QE-12, 95–101 (1976).
[CrossRef]

Pierce, B. M.

B. M. Pierce, R. R. Birge, “Lasing properties of several near-IR dyes for a nitrogen laser-pumped dye laser with an optical amplifier,” IEEE J. Quantum Electron. QE-18, 1164–1170 (1982).
[CrossRef]

Qiu, P.

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

Raue, R.

R. Raue, H. Harnisch, K. H. Drexhage, “Dyestuff lasers and light collectors—two new fields of application for fluorescent heterocyclic compounds,” Heterocycles 21, 167–190 (1984).
[CrossRef]

Reynolds, G. A.

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Romanek, K. M.

K. M. Romanek, O. Hildebrand, E. Gobel, “High power cw dye laser emission in the near IR from 685 nm to 965 nm,” Opt. Commun. 21, 16–19 (1977).
[CrossRef]

Rosenberg, A.

A. Rosenberg, McDonnell Douglas Electronic Systems Co., Elmsford, N.Y. 10523 (personal communication, 1991).

Seilmeier, A.

Sens, B.

A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable picosecond pulses around 1.3 μm generated by a synchronously pumped infrared dye laser,” Opt. Lett. 8, 205–207 (1983).
[CrossRef] [PubMed]

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

Stickler, S. J.

S. J. Stickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

Von der Linde, D.

J. Kuhl, R. Lambrich, D. Von der Linde, “Generation of near-infrared picosecond pulses by mode locked synchronous pumping of a jet-stream dye laser,” Appl. Phys. Lett. 31, 657–658 (1977).
[CrossRef]

Weisbuch, C.

M. Leduc, C. Weisbuch, “Cw dye laser emission beyond 1000 nm,” Opt. Commun. 26, 78–80 (1978).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
[CrossRef]

Appl. Phys. B (1)

B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm,” Appl. Phys. B 29, 15–18 (1982).
[CrossRef]

Appl. Phys. Lett. (2)

J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
[CrossRef]

J. Kuhl, R. Lambrich, D. Von der Linde, “Generation of near-infrared picosecond pulses by mode locked synchronous pumping of a jet-stream dye laser,” Appl. Phys. Lett. 31, 657–658 (1977).
[CrossRef]

Heterocycles (1)

R. Raue, H. Harnisch, K. H. Drexhage, “Dyestuff lasers and light collectors—two new fields of application for fluorescent heterocyclic compounds,” Heterocycles 21, 167–190 (1984).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. E. Oettinger, C. F. Dewey, “Lasing efficiency and photochemical stability of infrared laser dyes in the 710–1080 nm region,” IEEE J. Quantum Electron. QE-12, 95–101 (1976).
[CrossRef]

K. Kato, “Near infrared dye laser pumped by a carbazine 122 dye laser,” IEEE J. Quantum Electron. QE-12, 442–443 (1976).
[CrossRef]

B. M. Pierce, R. R. Birge, “Lasing properties of several near-IR dyes for a nitrogen laser-pumped dye laser with an optical amplifier,” IEEE J. Quantum Electron. QE-18, 1164–1170 (1982).
[CrossRef]

J. Appl. Phys. (1)

C. A. Moore, C. D. Decker, “Power-scaling effects in dye lasers under high power laser excitation,” J. Appl. Phys. 49, 47–60 (1978).
[CrossRef]

J. Chem. Phys. (1)

S. J. Stickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

Opt. Commun. (5)

K. Kato, “A high power dye laser at 6700–7700 Å,” Opt. Commun. 19, 18–19 (1976).
[CrossRef]

M. Leduc, C. Weisbuch, “Cw dye laser emission beyond 1000 nm,” Opt. Commun. 26, 78–80 (1978).
[CrossRef]

M. Leduc, “Synchronous pumping of dye lasers up to 1095 nm,” Opt. Commun. 31, 66–68 (1979).
[CrossRef]

K. M. Romanek, O. Hildebrand, E. Gobel, “High power cw dye laser emission in the near IR from 685 nm to 965 nm,” Opt. Commun. 21, 16–19 (1977).
[CrossRef]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A new infrared laser dye of superior photostability tunable to 1.24 μm with picosecond excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Opt. Lett. (1)

Other (3)

A. Rosenberg, McDonnell Douglas Electronic Systems Co., Elmsford, N.Y. 10523 (personal communication, 1991).

J. Britton, EG&G Optoelectronics, Vaudreuil, Quebec J7V 8P7, Canada (personal communication, 1991).

F. J. Duarte, L. W. Hillman, Dye Laser Principles with Applications (Academic, San Diego, Calif., 1990), pp. 194–196.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

CW diode-pumped dye laser concept.

Fig. 2
Fig. 2

LD-800 absorption/emission spectra; cross sections versus wavelength.

Fig. 3
Fig. 3

IR-26 absorption/emission spectra; cross sections versus wavelength.

Fig. 4
Fig. 4

LD-800 threshold pump intensity versus wavelength for various outcoupler reflectivities: (a) Φ = 8.60%; (b) Φ = 39.0%.

Fig. 5
Fig. 5

IR-26 threshold pump intensity versus wavelength for various outcoupler reflectivities: (a) Φ = 0.1%; (b) Φ = 1.0%.

Fig. 6
Fig. 6

(a) LD-800 extraction efficiency (ηex) versus wavelength for various diode pump powers (PP) and quantum yields (Φ). (b) LD-800 optimum reflectivity (Roc) versus wavelength for various diode pump powers (PP) and quantum yields (Φ).

Fig. 7
Fig. 7

(a) IR-26 extraction efficiency (ηex) versus wavelength for various diode pump powers (PP) and quantum yields (Φ). (b) IR-26 optimum reflectivity (Roc) versus wavelength for various diode pump powers (PP) and quantum yields (Φ).

Fig. 8
Fig. 8

Pulsed diode-pumped dye laser concept.

Fig. 9
Fig. 9

Synchronously pumped dye laser concept.

Tables (2)

Tables Icon

Table 1 Optical Properties of Selected Laser Dyes

Tables Icon

Table 2 Synchronous Dye Laser Pumping Conditions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I P Thr = h c / λ P σ P τ Φ [ T N L ( σ e - σ a ) - T ] .
T = α + ( 1 - α ) ( 1 - R oc ) ,
g = g 0 1 + I e I s ,
g 0 = N σ P I P τ Φ ( σ e - σ a ) h c / λ P + σ P I P τ Φ ,
η ex = ( 1 - R oc 1 + R oc ) [ 2 g 0 L α - ln ( R oc ) - 1 ] .

Metrics