Abstract

We have measured and analyzed high-resolution single-pulse spectra of a typical commercial dye laser. The longitudinal mode structure was resolved by using a Fizeau interferometer as the spectrum analyzer. In mode intensities we observed strong pulse-to-pulse fluctuations that are caused mainly by the variations of the spontaneous emissions to the laser modes during the starting phase of the laser pulse. Apart from the quantum noise, frequency jitter, i.e., shifts of the whole frequency comb, was also observed. The jitter appeared to be very fast, of the order of a few megahertz and hence cannot be explained by technical noise alone. A detailed knowledge of the spectral fluctuations is needed in theoretical models of noise effects in nonlinear spectroscopy. It can also be applied to novel noise reduction techniques.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Curry, R. Cubeddu, T. W. Hänsch, “Intensity stabilization of dye laser radiation by saturated amplification,” Appl. Phys. 1, 153–159 (1973).
    [Crossref]
  2. A. V. Masalov, “Spectral and temporal fluctuations of broadband laser radiation,” in Progress in Optics XXII, E. Wolf, ed. (North-Holland, Amsterdam, 1985), pp. 145–196.
    [Crossref]
  3. D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
    [Crossref] [PubMed]
  4. S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise characteristics of single shot broadband Raman-resonant CARS with single- and multimode lasers,” Appl. Opt. 26, 1068–1073 (1987).
    [Crossref] [PubMed]
  5. G. A. Capelle, J. P. Young, D. L. Donohue, D. H. Smith, “Laser bandwidth effects in resonance ionization spectroscopy of Nd,” J. Opt. Soc. Am. B 4, 445–451 (1987).
    [Crossref]
  6. G. Mainfray, “Temporal coherence effects in multiphoton ionization of atoms,” in Multiphoton Processes, J. H. Eberly, P. Lambropoulos, eds. (Wiley, New York, 1978), pp. 253–265.
  7. L. A. Westling, M. G. Raymer, J. J. Snyder, “Single-shot spectral measurements and mode correlations in a multimode pulsed dye laser,” J. Opt. Soc. Am. B 1, 150–154 (1984).
    [Crossref]
  8. F. J. Duarte, J. A. Piper, “Narrow linewidth, high prf copper laser-pumped dye-laser oscillators,” Appl. Opt. 23, 1391–1394 (1984).
    [Crossref] [PubMed]
  9. M. V. R. K. Murty, “The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source,” Appl. Opt. 3, 531–534 (1964).
    [Crossref]
  10. P. H. Langenbeck, “Fizeau interferometer—fringe sharpening,” Appl. Opt. 9, 2053–2058 (1970).
    [Crossref] [PubMed]
  11. Y. H. Meyer, “Fringe shape with an interferential wedge,” J. Opt. Soc. Am. 71, 1255–1263 (1981).
    [Crossref]
  12. A. A. Pease, W. M. Pearson, “Axial mode structure of a copper vapor pumped dye laser,” Appl. Opt. 16, 57–60 (1977).
    [Crossref] [PubMed]
  13. T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
    [Crossref] [PubMed]
  14. V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
    [Crossref]
  15. V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
    [Crossref]
  16. E. Berik, V. Davidenko, “Statistical properties of pulsed dye laser radiation,” Opt. Commun. 67, 129–132 (1988).
    [Crossref]
  17. I. Itzkan, F. W. Cunningham, “Oscillator–amplifier dye-laser system using N2 laser pumping,” IEEE J. Quantum Electron. QE-8, 101–105 (1972).
    [Crossref]
  18. F. J. Duarte, J. J. Ehrlich, S. P. Patterson, S. D. Russell, J. E. Adams, “Linewidth instabilities in narrow-linewidth flashlamp-pumped dye laser oscillators,” Appl. Opt. 27, 843–846 (1988).
    [Crossref] [PubMed]

1988 (2)

1987 (2)

1985 (1)

1984 (2)

1981 (2)

Y. H. Meyer, “Fringe shape with an interferential wedge,” J. Opt. Soc. Am. 71, 1255–1263 (1981).
[Crossref]

V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[Crossref]

1980 (1)

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[Crossref]

1977 (1)

1973 (1)

S. M. Curry, R. Cubeddu, T. W. Hänsch, “Intensity stabilization of dye laser radiation by saturated amplification,” Appl. Phys. 1, 153–159 (1973).
[Crossref]

1972 (2)

T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
[Crossref] [PubMed]

I. Itzkan, F. W. Cunningham, “Oscillator–amplifier dye-laser system using N2 laser pumping,” IEEE J. Quantum Electron. QE-8, 101–105 (1972).
[Crossref]

1970 (1)

1964 (1)

Adams, J. E.

Aldén, M.

Baev, V. M.

V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[Crossref]

Berglind, T.

Berik, E.

E. Berik, V. Davidenko, “Statistical properties of pulsed dye laser radiation,” Opt. Commun. 67, 129–132 (1988).
[Crossref]

Capelle, G. A.

Cubeddu, R.

S. M. Curry, R. Cubeddu, T. W. Hänsch, “Intensity stabilization of dye laser radiation by saturated amplification,” Appl. Phys. 1, 153–159 (1973).
[Crossref]

Cunningham, F. W.

I. Itzkan, F. W. Cunningham, “Oscillator–amplifier dye-laser system using N2 laser pumping,” IEEE J. Quantum Electron. QE-8, 101–105 (1972).
[Crossref]

Curry, S. M.

S. M. Curry, R. Cubeddu, T. W. Hänsch, “Intensity stabilization of dye laser radiation by saturated amplification,” Appl. Phys. 1, 153–159 (1973).
[Crossref]

Davidenko, V.

E. Berik, V. Davidenko, “Statistical properties of pulsed dye laser radiation,” Opt. Commun. 67, 129–132 (1988).
[Crossref]

Donohue, D. L.

Duarte, F. J.

Ehrlich, J. J.

Gaida, G.

V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[Crossref]

Greenhalgh, D. A.

Hall, R. J.

Hänsch, T. W.

S. M. Curry, R. Cubeddu, T. W. Hänsch, “Intensity stabilization of dye laser radiation by saturated amplification,” Appl. Phys. 1, 153–159 (1973).
[Crossref]

T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
[Crossref] [PubMed]

Itzkan, I.

I. Itzkan, F. W. Cunningham, “Oscillator–amplifier dye-laser system using N2 laser pumping,” IEEE J. Quantum Electron. QE-8, 101–105 (1972).
[Crossref]

Kröll, S.

Langenbeck, P. H.

Mainfray, G.

G. Mainfray, “Temporal coherence effects in multiphoton ionization of atoms,” in Multiphoton Processes, J. H. Eberly, P. Lambropoulos, eds. (Wiley, New York, 1978), pp. 253–265.

Masalov, A. V.

A. V. Masalov, “Spectral and temporal fluctuations of broadband laser radiation,” in Progress in Optics XXII, E. Wolf, ed. (North-Holland, Amsterdam, 1985), pp. 145–196.
[Crossref]

Meyer, Y. H.

Mironenko, V. R.

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[Crossref]

Murty, M. V. R. K.

Patterson, S. P.

Pearson, W. M.

Pease, A. A.

Piper, J. A.

Raymer, M. G.

Russell, S. D.

Schröder, H.

V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[Crossref]

Smith, D. H.

Snyder, J. J.

Toschek, P. E.

V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[Crossref]

Westling, L. A.

Whittley, S. T.

Young, J. P.

Yudson, V. I.

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[Crossref]

Appl. Opt. (8)

Appl. Phys. (1)

S. M. Curry, R. Cubeddu, T. W. Hänsch, “Intensity stabilization of dye laser radiation by saturated amplification,” Appl. Phys. 1, 153–159 (1973).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Itzkan, F. W. Cunningham, “Oscillator–amplifier dye-laser system using N2 laser pumping,” IEEE J. Quantum Electron. QE-8, 101–105 (1972).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

V. M. Baev, G. Gaida, H. Schröder, P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[Crossref]

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[Crossref]

E. Berik, V. Davidenko, “Statistical properties of pulsed dye laser radiation,” Opt. Commun. 67, 129–132 (1988).
[Crossref]

Other (2)

A. V. Masalov, “Spectral and temporal fluctuations of broadband laser radiation,” in Progress in Optics XXII, E. Wolf, ed. (North-Holland, Amsterdam, 1985), pp. 145–196.
[Crossref]

G. Mainfray, “Temporal coherence effects in multiphoton ionization of atoms,” in Multiphoton Processes, J. H. Eberly, P. Lambropoulos, eds. (Wiley, New York, 1978), pp. 253–265.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transversely pumped Littrow-type cavity design and dimensions of the pulsed dye laser.

Fig. 2
Fig. 2

Optical design of the single-pulse spectrum analyzer consists of a spatial filter, collimating optics, and Fizeau interferometer. The angle of incidence for the collimated beam θ must be adjusted to optimize the instrumental fringe shape on the observation plane. The fringe pattern is detected with a linear photodiode array, externally controlled by a microcomputer through an array controller. The controller output, i.e., dye laser pulse spectrum, is seen on a digital oscilloscope screen and stored in the microcomputer.

Fig. 3
Fig. 3

Subsequent dye laser pulse spectra with clearly visible mode structures. Two orders of interference are shown with a FSR of 12 GHz.

Fig. 4
Fig. 4

Averages of 8 (bottom), 32 (middle), and 100 (top) dye laser pulse spectra.

Fig. 5
Fig. 5

Distributions of strong laser modes in 100 laser pulses. The black rectangles represent the strong modes, i.e., regions of pulse spectra that exceed the threshold level sketched in the inset.

Fig. 6
Fig. 6

(a) Observed probabilities for the coexistence of two strong modes in the same pulse. (b) The degree of spatial overlap of the modes in the amplifier cell (λ = 500 nm).

Fig. 7
Fig. 7

Subsequent dye laser pulse spectra when an étalon was inserted into the cavity. Single-mode operation is favored, but frequency jitter is evident. In some pulses the modes seem to be slanted, suggesting a fast jitter effect.

Fig. 8
Fig. 8

Averages of 8 (bottom), 32 (middle), and 100 (top) dye laser pulse spectra when an étalon was inserted into the cavity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C n m = ( 1 / l ) z 0 z 0 + l sin 2 ( k n z ) sin 2 ( k m z ) d z ,
I ( ν ) = I 0 sin 2 [ N δ ( ν ) ] sin 2 [ δ ( ν ) ] ,

Metrics