Abstract

We present a new arrangement for contouring by electronic speckle pattern interferometry with four illumination beams, thereby making it unnecessary to move anything during the measurement.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989), Chap. 5, p. 204.
  2. B. D. Bergquist, P. Montgomery, “Contouring by electronic speckle pattern interferometry,” in Optics in Engineering Measurement, W. F. Fagan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.599, 189–195 (1985).
  3. S. Winther, G. Slettemoen, “An ESPI contouring technique in strain analysis,” in Symposium Optika ’84, G. Lupkovics, A. Podmaniczky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.473, 44–47 (1984).
  4. C. Joenathan, B. Pfister, H. Tiziani, “Contouring by electronic speckle pattern interferometry employing dual beam illumination,” Appl. Opt. 29, 1905–1911 (1990).
    [CrossRef] [PubMed]
  5. X. Peng, H. Y. Diao, Y. L. Zou, H. Tiziani, “Contouring by modified dual-beam ESPI based on tilting illumination beams,” Optik (Stuttgart) 90, 61–64 (1992).
  6. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985).
    [CrossRef] [PubMed]
  7. Y. Zou, H. Diao, X. Peng, H. Tiziani, “Geometry for contouring by electronic speckle pattern interferometry based on shifting illumination beams,” Appl. Opt. 31, 6616–6621 (1 1992).
    [CrossRef] [PubMed]

1992 (2)

X. Peng, H. Y. Diao, Y. L. Zou, H. Tiziani, “Contouring by modified dual-beam ESPI based on tilting illumination beams,” Optik (Stuttgart) 90, 61–64 (1992).

Y. Zou, H. Diao, X. Peng, H. Tiziani, “Geometry for contouring by electronic speckle pattern interferometry based on shifting illumination beams,” Appl. Opt. 31, 6616–6621 (1 1992).
[CrossRef] [PubMed]

1990 (1)

1985 (1)

Bergquist, B. D.

B. D. Bergquist, P. Montgomery, “Contouring by electronic speckle pattern interferometry,” in Optics in Engineering Measurement, W. F. Fagan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.599, 189–195 (1985).

Creath, K.

Diao, H.

Diao, H. Y.

X. Peng, H. Y. Diao, Y. L. Zou, H. Tiziani, “Contouring by modified dual-beam ESPI based on tilting illumination beams,” Optik (Stuttgart) 90, 61–64 (1992).

Joenathan, C.

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989), Chap. 5, p. 204.

Montgomery, P.

B. D. Bergquist, P. Montgomery, “Contouring by electronic speckle pattern interferometry,” in Optics in Engineering Measurement, W. F. Fagan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.599, 189–195 (1985).

Peng, X.

X. Peng, H. Y. Diao, Y. L. Zou, H. Tiziani, “Contouring by modified dual-beam ESPI based on tilting illumination beams,” Optik (Stuttgart) 90, 61–64 (1992).

Y. Zou, H. Diao, X. Peng, H. Tiziani, “Geometry for contouring by electronic speckle pattern interferometry based on shifting illumination beams,” Appl. Opt. 31, 6616–6621 (1 1992).
[CrossRef] [PubMed]

Pfister, B.

Slettemoen, G.

S. Winther, G. Slettemoen, “An ESPI contouring technique in strain analysis,” in Symposium Optika ’84, G. Lupkovics, A. Podmaniczky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.473, 44–47 (1984).

Tiziani, H.

Winther, S.

S. Winther, G. Slettemoen, “An ESPI contouring technique in strain analysis,” in Symposium Optika ’84, G. Lupkovics, A. Podmaniczky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.473, 44–47 (1984).

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989), Chap. 5, p. 204.

Zou, Y.

Zou, Y. L.

X. Peng, H. Y. Diao, Y. L. Zou, H. Tiziani, “Contouring by modified dual-beam ESPI based on tilting illumination beams,” Optik (Stuttgart) 90, 61–64 (1992).

Appl. Opt. (3)

Optik (Stuttgart) (1)

X. Peng, H. Y. Diao, Y. L. Zou, H. Tiziani, “Contouring by modified dual-beam ESPI based on tilting illumination beams,” Optik (Stuttgart) 90, 61–64 (1992).

Other (3)

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1989), Chap. 5, p. 204.

B. D. Bergquist, P. Montgomery, “Contouring by electronic speckle pattern interferometry,” in Optics in Engineering Measurement, W. F. Fagan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.599, 189–195 (1985).

S. Winther, G. Slettemoen, “An ESPI contouring technique in strain analysis,” in Symposium Optika ’84, G. Lupkovics, A. Podmaniczky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.473, 44–47 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the ESPI arrangement with quadruple-beam illumination. L, collimator lens.

Fig. 2
Fig. 2

Geometry of the ESPI contouring.

Fig. 3
Fig. 3

Vector geometry.

Fig. 4
Fig. 4

Results obtained when the illumination angle θ is 30° and the angle difference Δθ is 0.77 mrad: (a) contour fringes, (b) phase map, (c) three-dimensional plot, (d) contour map.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ Γ = 4 ( I 1 I 2 ) 1 / 2 sin [ ( ϕ s 1 - ϕ s 2 ) + ( ψ m + ψ m ) / 2 ] × sin ( Δ ψ m / 2 ) ,
ϕ m 1 = 2 π λ ( r m + r m · K 1 ) , ϕ m 2 = 2 π λ ( r m + r m · K 2 ) ,
Ψ m = ϕ m 1 - ϕ m 2 = 2 π λ r m · ( K 1 - K 2 ) .
Ψ m = 2 π λ r m · ( K 1 - K 2 ) .
Δ Ψ m = 2 π λ r m · ( Δ K 1 - Δ K 2 ) = 2 π λ r m Δ K 1 - Δ K 2 cos β ,
Δ Ψ m = 2 π λ ( 2 sin θ ) Δ θ h ,
h = r m cos β ,
d = λ ( 2 sin θ ) Δ θ .

Metrics