## Abstract

The generalized eikonal amplitude for light scattering at large size parameters by a dielectric sphere is modified to account more rigorously for the phase-change difference caused by the presence of the medium. The resulting amplitude is shown to work well for scattering at large angles. It accurately predicts the positions of maxima and minima for scattering angles up to 60° for perpendicularly polarized light.

© 1992 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$S(\mathrm{\theta})=\frac{ik}{4\mathrm{\pi}}(1-\mathrm{\gamma}){S}_{B}-\mathrm{\alpha}{\mathrm{\gamma}}^{2}{k}^{2}{\int}_{0}^{a}b\text{d}b{J}_{0}(qb)\times \{\text{exp}[i\mathrm{\rho}Z(b)/a]-1\},$$
(2)
$${S}_{B}=-4\mathrm{\pi}{k}^{2}({n}^{2}-1){\int}_{0}^{a}b\text{d}bZ(b){J}_{0}(qb).$$
(3)
$$\mathrm{\alpha}=\frac{(n+1)}{2}-i\frac{3}{8}\left[\frac{1}{x}-\frac{2}{\mathrm{\rho}}\left(\frac{{a}_{1}}{{x}^{2/3}}-\frac{{a}_{2}}{{x}^{4/3}}\right)\right],$$
(4)
$$\mathrm{\alpha}\mathrm{\gamma}=(n+1)/2.$$
(5)
$$\mathrm{\alpha}\mathrm{\gamma}=({n}^{2}-1)/2[n-\text{cos}(\mathrm{\theta}/2)].$$