Abstract

We describe a method for discriminating short- and long-path photons transmitted through a multiply scattering medium that is based on the relationship between the polarization states of the incident and forward-scattered light. Results of Monte Carlo simulations and experiments show that if the scattering anisotropy of the scatterers is sufficiently small, absorbing barriers embedded in optically dense suspensions of polystyrene spheres can be resolved with good contrast by selectively detecting a component of the scattered-light intensity that has preserved its incident circular polarization state.

The principles of operation of a polarization-modulation system capable of measuring small polarization fractions are explained. Using this system we were able to measure polarized light in a depolarized background over 1000 times as large.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization discrimination of coherently propagating light in turbid media

Vanitha Sankaran, Klaus Schönenberger, Joseph T. Walsh, and Duncan J. Maitland
Appl. Opt. 38(19) 4252-4261 (1999)

Polarized light propagation through tissue phantoms containing densely packed scatterers

Vanitha Sankaran, Joseph T. Walsh, and Duncan J. Maitland
Opt. Lett. 25(4) 239-241 (2000)

Time-resolved backscattering of circularly and linearly polarized light in a turbid medium

Xiaohui Ni and R. R. Alfano
Opt. Lett. 29(23) 2773-2775 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription