Abstract

We have developed a Monte Carlo program that can account for Raman scattering in the ocean when polarization effects are not considered. The program is capable of coupling an inhomogeneous atmosphere to an inhomogeneous ocean through a dielectric interface. We have studied the filling in of both the 486-nm Hβ and the 518-nm Mg Fraunhofer lines caused by Raman scattering in the ocean. The amount of fill varies with solar zenith angle, angle of view, depth in the ocean, and magnitude of the cross sections. By monitoring the shapes of Fraunhofer lines we can learn a great deal about the relative importance of this inelastic process in oceanic optics.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4010 (1988).
    [CrossRef] [PubMed]
  2. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [CrossRef] [PubMed]
  3. M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, Naval Ocean Systems Center, San Diego, Calif. 92152-5000 (personal communication).
  4. J. R. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
    [CrossRef]
  5. G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
    [CrossRef]
  6. D. A. Leonard, B. Caputo, F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
    [CrossRef] [PubMed]
  7. G. Eckhardt, W. G. Wagner, “On the calculation of absolute Raman scattering coefficients,” J. Mol. Spectrosc. 19, 407–411 (1966).
    [CrossRef]
  8. N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).
  9. I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).
  10. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  11. C. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
    [CrossRef]
  12. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  13. J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers,” Rep. AFGL-TR-76-0126 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).
  14. H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34, 1389–1409 (1989).
    [CrossRef]
  15. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward radiance in the sea,” J. Oceanol. Soc. Jpn. 40, 397–403 (1984).
    [CrossRef]

1990 (1)

1989 (1)

H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

1988 (1)

1984 (1)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward radiance in the sea,” J. Oceanol. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

1981 (2)

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

1979 (1)

1978 (1)

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).

1975 (1)

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

1967 (1)

C. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[CrossRef]

1966 (1)

G. Eckhardt, W. G. Wagner, “On the calculation of absolute Raman scattering coefficients,” J. Mol. Spectrosc. 19, 407–411 (1966).
[CrossRef]

1962 (1)

J. R. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Baker, K. S.

Beckers, J. M.

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers,” Rep. AFGL-TR-76-0126 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Bridges, C. A.

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers,” Rep. AFGL-TR-76-0126 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Caputo, B.

Demyanenko, O. P.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).

Eckhardt, G.

G. Eckhardt, W. G. Wagner, “On the calculation of absolute Raman scattering coefficients,” J. Mol. Spectrosc. 19, 407–411 (1966).
[CrossRef]

Gilliam, L. B.

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers,” Rep. AFGL-TR-76-0126 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Gordon, H. R.

H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

Grainger, J. R.

J. R. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Hoge, F. E.

Humphreys, T. J.

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Kattawar, G. W.

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Kaye, G. T.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, Naval Ocean Systems Center, San Diego, Calif. 92152-5000 (personal communication).

Kishino, M.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward radiance in the sea,” J. Oceanol. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Klimenko, V. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).

Kondilenko, I. I.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).

Korotkov, P. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).

Leonard, D. A.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Lovern, M. G.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, Naval Ocean Systems Center, San Diego, Calif. 92152-5000 (personal communication).

Marshall, B. R.

Miller, S. A.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, Naval Ocean Systems Center, San Diego, Calif. 92152-5000 (personal communication).

Okami, N.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward radiance in the sea,” J. Oceanol. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Ring, J.

J. R. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Roberts, M. W.

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, Naval Ocean Systems Center, San Diego, Calif. 92152-5000 (personal communication).

Romanov, N. P.

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

Shuklin, V. S.

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

Smith, R. C.

Stavn, R. H.

Sugihara, S.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward radiance in the sea,” J. Oceanol. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Wagner, W. G.

G. Eckhardt, W. G. Wagner, “On the calculation of absolute Raman scattering coefficients,” J. Mol. Spectrosc. 19, 407–411 (1966).
[CrossRef]

Walrafen, C. E.

C. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[CrossRef]

Weidemann, A. D.

Young, A. T.

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

Appl. Opt. (4)

Astrophys. J. (1)

G. W. Kattawar, A. T. Young, T. J. Humphreys, “Inelastic scattering in planetary atmospheres. I. The ring effect, without aerosols,” Astrophys. J. 243, 1049–1057 (1981).
[CrossRef]

J. Chem. Phys. (1)

C. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114–126 (1967).
[CrossRef]

J. Mol. Spectrosc. (1)

G. Eckhardt, W. G. Wagner, “On the calculation of absolute Raman scattering coefficients,” J. Mol. Spectrosc. 19, 407–411 (1966).
[CrossRef]

J. Oceanol. Soc. Jpn. (1)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward radiance in the sea,” J. Oceanol. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Limnol. Oceanogr. (1)

H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

Nature (London) (1)

J. R. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962).
[CrossRef]

Opt. Spectrosc. (USSR) (2)

N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. (USSR) 43, 384–386 (1978).

Other (3)

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, Naval Ocean Systems Center, San Diego, Calif. 92152-5000 (personal communication).

J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers,” Rep. AFGL-TR-76-0126 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometry describing various polarization states for defining Raman-scattering cross sections.

Fig. 2
Fig. 2

Geometry describing a general polarization state for Raman scattering.

Fig. 3
Fig. 3

Water Raman band computed from the parameters in Table 2 by using Eq. (6).

Fig. 4
Fig. 4

Solar Fraunhofer lines for Hβ (486 nm) and Mg (518 nm).

Fig. 5
Fig. 5

Hydrosol volume-scattering function used for the ocean model.

Fig. 6
Fig. 6

Core-to-wing radiance ratio (IC/IW) of both upward and downward radiances for the 486-nm Hβ line as a function of zenith angle for three depths and four different ocean models. The solar zenith angle is 0°.

Fig. 7
Fig. 7

Same as Fig. 6, except that the solar zenith angle is 60° and each panel shows a single depth with the azimuthal variation.

Fig. 8
Fig. 8

Same as Fig. 7 except depths are plotted on the same curve and only two azimuthal ranges are considered, i.e., 60° ≤ ϕ ≤ 90° and 150° ≤ ϕ ≤ 180°.

Fig. 9
Fig. 9

Core-to-wing radiance ratio (IC/IW) of both upward and downward radiances for the 518-nm Mg line as a function of zenith angle for three depths, two solar zenith angles (0° and 60°), and for the SRam + Hyd case. For the 60° solar zenith-angle case the results are averaged over the azimuthal angle.

Fig. 10
Fig. 10

Core-to-wing irradiance ratio (EC/EW) normalized to the surface-value ratio as a function of depth for both upward and downward irradiances for both the 486- and 518-nm lines. The solar zenith angle was 0°.

Fig. 11
Fig. 11

Ratio of the inelastic irradiance to the total irradiance at the observation wavelength for both the upwelling and downwelling irradiance as a function of depth for both the 486- and 518-nm lines.

Fig. 12
Fig. 12

Upward (Ku) and downward (Kd) irradiance-attenuation coefficients divided by the extinction coefficient (c) as a function of depth for both the elastic and total results for both the 486-nm and 518-nm lines. The solar zenith angle was 0°, and the SRam + Hyd case is the one presented.

Tables (4)

Tables Icon

Table 1 Contributions of Various Input–Output Components to the Raman Differential Scattering Cross Sectiona

Tables Icon

Table 2 Wave-Number Shifts μ ˜ i Half-Widths μ ˜ l Hw and Amplitudes Ai for the Gaussian Profile Used to Compute the Raman Band

Tables Icon

Table 3 Optical Parameters Used in Calculations at Both 417 nm Raman Shifted to 486 nm and 441 nm Raman Shifted to 518 nm

Tables Icon

Table 4 Ratio of Core-to-Wing Irradiances(Ec/Ew) for the 486-nm Hβ Line as a Function of Depth for Both Upward and Downward Irradiancesa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( d σ e ^ e ^ d Ω ) Ram ρ + ( 1 - ρ ) e · e ^ 2 1 + ρ ,
ρ = 3 γ 2 45 a 2 + 4 γ 2 ,
( d σ n e ^ d Ω ) Ram 2 ρ + ( 1 - ρ ) ( cos 2 θ cos 2 ϕ + sin 2 ϕ ) 1 + ρ .
( d σ n e ^ d Ω ) Ram 2 ρ + ( 1 - ρ ) sin 2 Θ 1 + ρ ,
( d σ n e ^ d Ω ) Ram = ( d σ n e ^ d Ω ) Ram 90 ° [ 2 ρ + ( 1 - ρ ) ( cos 2 θ cos 2 ϕ + sin 2 ϕ ) 1 + ρ ] .
( d σ n e ^ d θ ) Ram = ( d σ n e ^ d Ω ) Ram 90 ° π ( 1 + 3 ρ ) 1 + ρ [ 1 + ( 1 + ρ ) cos 2 θ 1 + 3 ρ ] .
( σ n e ^ ) Ram = ( d σ n e ^ d Ω ) Ram 90 ° 8 π 3 ( 1 + 2 ρ 1 + ρ ) .
I Ram i = 1 4 A i 1 ν ˜ i Hw exp [ - ( ν ˜ - ν ˜ i ) 2 ( ν ˜ i Hw ) 2 k ] ,

Metrics