Abstract

The depolarization of backscatter from ice particles at the CO2 lidar wavelength of 10.59 μm was investigated through field measurements, with simultanous depolarization measurements taken at 0.6943 μm for comparison. The depolarization ratio at the infrared wavelength was usually at or below the lidar’s sensitivity limit of 0.01, which is dramatically smaller than the typical 0.5 linear depolarization ratio for short-wave lidars. This behavior is explained by the strong absorption of ice at the infrared wavelength. Depolarization measurements at a 10.59-μm wavelength cannot discriminate between ice and water clouds in the manner of short-wave lidars. A possibility exists for more prominent depolarization at shorter CO2 lidar wavelengths (e.g., 9.115 μm), but additional research is required. Depolarization at the 2.09-μm wavelength is predicted to be substantial and useful for hydrometeor observations.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
    [CrossRef]
  2. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
    [CrossRef] [PubMed]
  3. K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
    [CrossRef]
  4. K. Sassen, “Air-truth lidar polarization studies of orographic clouds,” J. Appl. Meteorol. 17, 73–91 (1978).
    [CrossRef]
  5. K. Sassen, “Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements,” J. Climate Appl. Meteorol. 23, 568–583 (1984).
    [CrossRef]
  6. K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
    [CrossRef]
  7. V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
    [CrossRef]
  8. C. M. R. Platt, “Lidar observation of a mixed-phase cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
    [CrossRef]
  9. C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
    [CrossRef]
  10. J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983).
    [CrossRef]
  11. O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).
  12. R. J. Curran, panel chair, LAWS Instrument Panel Report (NASA, Washington, D.C., 1987), Vol. IIg.
  13. K. Sassen, “Infrared (10.6-μm) scattering and extinction in laboratory water and ice clouds,” Appl. Opt. 20, 185–193 (1981).
    [CrossRef] [PubMed]
  14. A. Gross, M. J. Post, F. F. Hall, “Depolarization, backscatter, and attenuation of CO2 lidar by cirrus clouds,” Appl. Opt. 23, 2518–2522 (1984).
    [CrossRef] [PubMed]
  15. W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.
  16. M. J. Post, R. E. Cupp, “Optimizing a pulsed doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]
  17. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
    [CrossRef]
  18. W. L. Eberhard, G. T. McNice, “Versatile lidar for atmospheric studies, including plume dispersion, clouds, and stratospheric aerosol,” J. Atmos. Oceanic Technol. 3, 614–622 (1986).
    [CrossRef]
  19. B. J. Mason, The Physics of Clouds (Clarendon, Oxford, 1971).
  20. Q. Cai, K.-N. Liou, “Polarized light scattering by hexagonal ice crystals,” Appl. Opt. 21, 3569–3580 (1972).
    [CrossRef]
  21. K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
    [CrossRef]
  22. K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
    [CrossRef]
  23. K. N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974).
    [CrossRef]
  24. C. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. J. A. Morrison, M.-J. Cross, “Scattering of a plane electromagnetic wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).
  26. S. Y. Matrosov, Y. M. Timofeyev, “Microwave attenuation and scattering characteristics of spheroidal raindrops,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 808–811 (1988).
  27. S. Y. Matrosov, Cooperative Institute for Research in Environmental Sciences, Boulder, Colo. 80309 (personal communication).
  28. J. W. Bilbro, R. Jayroe, W. Baker, “Status of the laser atmospheric wind sounder,” in Technical Digest on Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 238–241.
  29. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]

1991 (1)

1990 (2)

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

M. J. Post, R. E. Cupp, “Optimizing a pulsed doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

1989 (1)

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

1988 (2)

O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).

S. Y. Matrosov, Y. M. Timofeyev, “Microwave attenuation and scattering characteristics of spheroidal raindrops,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 808–811 (1988).

1986 (1)

W. L. Eberhard, G. T. McNice, “Versatile lidar for atmospheric studies, including plume dispersion, clouds, and stratospheric aerosol,” J. Atmos. Oceanic Technol. 3, 614–622 (1986).
[CrossRef]

1984 (2)

K. Sassen, “Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements,” J. Climate Appl. Meteorol. 23, 568–583 (1984).
[CrossRef]

A. Gross, M. J. Post, F. F. Hall, “Depolarization, backscatter, and attenuation of CO2 lidar by cirrus clouds,” Appl. Opt. 23, 2518–2522 (1984).
[CrossRef] [PubMed]

1983 (1)

J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

1981 (1)

1979 (2)

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

1978 (2)

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

K. Sassen, “Air-truth lidar polarization studies of orographic clouds,” J. Appl. Meteorol. 17, 73–91 (1978).
[CrossRef]

1977 (2)

K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
[CrossRef]

C. M. R. Platt, “Lidar observation of a mixed-phase cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
[CrossRef]

1976 (1)

V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
[CrossRef]

1974 (2)

K. N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974).
[CrossRef]

J. A. Morrison, M.-J. Cross, “Scattering of a plane electromagnetic wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

1973 (1)

1972 (1)

1971 (1)

R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Abshire, N. L.

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
[CrossRef]

Baker, W.

J. W. Bilbro, R. Jayroe, W. Baker, “Status of the laser atmospheric wind sounder,” in Technical Digest on Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 238–241.

Bilbro, J. W.

J. W. Bilbro, R. Jayroe, W. Baker, “Status of the laser atmospheric wind sounder,” in Technical Digest on Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 238–241.

Bohren, C. E.

C. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cai, Q.

Carswell, A. I.

Cross, M.-J.

J. A. Morrison, M.-J. Cross, “Scattering of a plane electromagnetic wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

Cupp, R. E.

M. J. Post, R. E. Cupp, “Optimizing a pulsed doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
[CrossRef]

Curran, R. J.

R. J. Curran, panel chair, LAWS Instrument Panel Report (NASA, Washington, D.C., 1987), Vol. IIg.

Derr, V. E.

V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
[CrossRef]

Eberhard, W. L.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

W. L. Eberhard, G. T. McNice, “Versatile lidar for atmospheric studies, including plume dispersion, clouds, and stratospheric aerosol,” J. Atmos. Oceanic Technol. 3, 614–622 (1986).
[CrossRef]

W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.

Gross, A.

Hale, C. P.

Hall, F. F.

Hansen, M. Z.

J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

Healy, K. R.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Henderson, S. W.

Huffaker, A. V.

Huffman, D. R.

C. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Huggins, A. W.

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

Intrieri, J. M.

W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.

Jayroe, R.

J. W. Bilbro, R. Jayroe, W. Baker, “Status of the laser atmospheric wind sounder,” in Technical Digest on Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 238–241.

Kai, K.

O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).

Kavaya, M. J.

Lahore, H.

K. N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974).
[CrossRef]

Liou, K. N.

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

K. N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974).
[CrossRef]

Liou, K.-N.

Long, A. B.

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

Magee, J. R.

Mason, B. J.

B. J. Mason, The Physics of Clouds (Clarendon, Oxford, 1971).

Matrosov, S. Y.

S. Y. Matrosov, Y. M. Timofeyev, “Microwave attenuation and scattering characteristics of spheroidal raindrops,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 808–811 (1988).

S. Y. Matrosov, Cooperative Institute for Research in Environmental Sciences, Boulder, Colo. 80309 (personal communication).

McNice, G. T.

W. L. Eberhard, G. T. McNice, “Versatile lidar for atmospheric studies, including plume dispersion, clouds, and stratospheric aerosol,” J. Atmos. Oceanic Technol. 3, 614–622 (1986).
[CrossRef]

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
[CrossRef]

Meitin, R. J.

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

Morrison, J. A.

J. A. Morrison, M.-J. Cross, “Scattering of a plane electromagnetic wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

Okada, Y.

O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).

Pal, S. R.

Platt, C. M. R.

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

C. M. R. Platt, “Lidar observation of a mixed-phase cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
[CrossRef]

Post, M. J.

Sassen, K.

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

K. Sassen, “Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements,” J. Climate Appl. Meteorol. 23, 568–583 (1984).
[CrossRef]

K. Sassen, “Infrared (10.6-μm) scattering and extinction in laboratory water and ice clouds,” Appl. Opt. 20, 185–193 (1981).
[CrossRef] [PubMed]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

K. Sassen, “Air-truth lidar polarization studies of orographic clouds,” J. Appl. Meteorol. 17, 73–91 (1978).
[CrossRef]

K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
[CrossRef]

R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Schotland, R. M.

R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Simpson, J.

J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

Snider, J. B.

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

Stone, R.

R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Tabata, I.

O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).

Timofeyev, Y. M.

S. Y. Matrosov, Y. M. Timofeyev, “Microwave attenuation and scattering characteristics of spheroidal raindrops,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 808–811 (1988).

Uchino, O.

O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).

Uttal, T.

W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.

Willis, R. J.

W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

J. A. Morrison, M.-J. Cross, “Scattering of a plane electromagnetic wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

S. Y. Matrosov, Y. M. Timofeyev, “Microwave attenuation and scattering characteristics of spheroidal raindrops,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 808–811 (1988).

J. Appl. Meteorol. (6)

K. N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974).
[CrossRef]

R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

K. Sassen, “Air-truth lidar polarization studies of orographic clouds,” J. Appl. Meteorol. 17, 73–91 (1978).
[CrossRef]

V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976).
[CrossRef]

C. M. R. Platt, “Lidar observation of a mixed-phase cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
[CrossRef]

C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

W. L. Eberhard, G. T. McNice, “Versatile lidar for atmospheric studies, including plume dispersion, clouds, and stratospheric aerosol,” J. Atmos. Oceanic Technol. 3, 614–622 (1986).
[CrossRef]

J. Atmos. Sci. (4)

K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990).
[CrossRef]

K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979).
[CrossRef]

K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

J. Climate Appl. Meteorol. (2)

K. Sassen, “Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements,” J. Climate Appl. Meteorol. 23, 568–583 (1984).
[CrossRef]

J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).

Opt. Lett. (1)

Other (6)

C. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

S. Y. Matrosov, Cooperative Institute for Research in Environmental Sciences, Boulder, Colo. 80309 (personal communication).

J. W. Bilbro, R. Jayroe, W. Baker, “Status of the laser atmospheric wind sounder,” in Technical Digest on Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 238–241.

R. J. Curran, panel chair, LAWS Instrument Panel Report (NASA, Washington, D.C., 1987), Vol. IIg.

W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.

B. J. Mason, The Physics of Clouds (Clarendon, Oxford, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Vertical profiles [in kilometers above ground level (km AGL)] of main and orthogonal backscatter coefficients averaged for 20 s beginning 0013:40 UTC on 25 September 1989 at wavelengths of (left) 10.59 μm and (right) 0.6943 μm.

Fig. 2
Fig. 2

Perturbation Mie calculations of δl at a 10.59-μm wavelength for spheroidal ice particles. The deviation from sphericity is defined by the axial ratio (0.6, 0.8, 1.2, or 1.4), and the orientation is specified by a canting angle of (a) 15° and (b) 45°. (Data points are sparse; lines only connect values of the same axial ratio.)

Fig. 3
Fig. 3

Calculated δl for infinite cylinders with incident light normal to the cylinder axis and two-dimensional random particle orientation within the plane containing the long axes at wavelengths of (a) 10.59 and 0.6943 μm and (b) 9.115 and 2.09 μm.

Tables (1)

Tables Icon

Table 1 Refractive Index and Penetration Depth Into Solid Ice at Several Lidar Wavelengths

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ l = I per / I par ,
δ = I ortho / I main .
δ l c = I per / I cir .
d = λ / 4 π n i .

Metrics